Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Heliyon ; 10(5): e26714, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439848

RESUMEN

Simple and complex carcinomas are the most common type of malignant Canine Mammary Tumors (CMTs), with simple carcinomas exhibiting aggressive behavior and poorer prognostic. Stemness is an ability associated with cancer initiation, malignancy, and therapeutic resistance, but is still few elucidated in canine mammary tumor subtypes. Here, we first validated, using CMT samples, a previously published canine one-class logistic regression machine learning algorithm (OCLR) to predict stemness (mRNAsi) in canine cancer cells. Then, using the canine mRNAsi, we observed that simple carcinomas exhibit higher stemness than complex carcinomas and other histological subtypes. Also, we confirmed that stemness is higher and associated with basal-like CMTs and with NMF2 metagene signature, a tumor-specific DNA-repair metagene signature. Using correlation analysis, we selected the top 50 genes correlated with higher stemness, and the top 50 genes correlated with lower stemness and further performed a gene set enrichment analysis to observe the biological processes enriched for these genes. Finally, we suggested two promise stemness-associated targets in CMTs, POLA2 and APEX1, especially in simple carcinomas. Thus, our work elucidates stemness as a potential mechanism behind the aggressiveness and development of canine mammary tumors, especially in simple carcinomas, describing evidence of a promising strategy to target this disease.

2.
Cancer Res ; 84(5): 741-756, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38117484

RESUMEN

Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype. SIGNIFICANCE: Standard treatments are related to loss of DNA methylation in IDHmut glioma, resulting in epigenetic activation of genes associated with tumor progression and alterations in the microenvironment that resemble treatment-naïve IDHwt glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Humanos , Neoplasias Encefálicas/patología , Epigénesis Genética , Epigenómica , Glioma/patología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación , Recurrencia Local de Neoplasia/genética , Microambiente Tumoral
3.
BMC Genomics ; 24(1): 717, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017371

RESUMEN

Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets. This one-class logistic regression machine learning algorithm is used to extract transcriptomic features from non-transformed stem cells to identify dedifferentiated cell states in tumors. We found this method identifies single cell states in metastatic tumor cell populations without the requirement of cell annotation. This machine learning model identified stem-like cell populations not identified in single cell or spatial transcriptomic analysis using existing methods. For the first time, we demonstrate the application of a ML tool across five emerging spatial transcriptomic and proteomic technologies to identify oncogenic stem-like cell types in the tumor microenvironment.


Asunto(s)
Proteómica , Transcriptoma , Modelos Logísticos , Perfilación de la Expresión Génica , Aprendizaje Automático
4.
Nat Commun ; 14(1): 5669, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704607

RESUMEN

Recurrence of meningiomas is unpredictable by current invasive methods based on surgically removed specimens. Identification of patients likely to recur using noninvasive approaches could inform treatment strategy, whether intervention or monitoring. In this study, we analyze the DNA methylation levels in blood (serum and plasma) and tissue samples from 155 meningioma patients, compared to other central nervous system tumor and non-tumor entities. We discover DNA methylation markers unique to meningiomas and use artificial intelligence to create accurate and universal models for identifying and predicting meningioma recurrence, using either blood or tissue samples. Here we show that liquid biopsy is a potential noninvasive and reliable tool for diagnosing and predicting outcomes in meningioma patients. This approach can improve personalized management strategies for these patients.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico , Meningioma/genética , Pronóstico , Inteligencia Artificial , Metilación de ADN , Biopsia Líquida , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética
5.
Adv Exp Med Biol ; 1416: 121-135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37432624

RESUMEN

Historically, the classification of tumors of the central nervous system (CNS) relies on the histologic appearance of cells under a microscope; however, the molecular era of medicine has resulted in new diagnostic paradigms anchored in the intrinsic biology of disease. The 2021 World Health Organization (WHO) reformulated the classification of CNS tumors to incorporate molecular parameters, in addition to histology, to define many tumor types. A contemporary classification system with integrated molecular features aims to provide an unbiased tool to define tumor subtype, the risk of tumor progression, and even the response to certain therapeutic agents. Meningiomas are heterogeneous tumors as depicted by the current 15 distinct variants defined by histology in the 2021 WHO classification, which also incorporated the first moelcular critiera for meningioma grading: homozygous loss of CDKN2A/B and TERT promoter mutation as criteria for a WHO grade 3 meningioma. The proper classification and clinical management of meningioma patients requires a multidisciplinary approach, which in addition to the information on microscopic (histology) and macroscopic (Simpson grade and imaging), should also include molecular alterations. In this chapter, we present the most up-to-date knowledge in CNS tumor classification, particularly in meningioma, in the molecular era and how it could affect their future classification and clinical management of patients with these diseases.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico , Meningioma/genética , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Sistema Nervioso Central , Técnicas Histológicas , Neoplasias Meníngeas/genética
6.
Cell Rep Med ; 4(6): 101082, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37343523

RESUMEN

Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/genética , Epigenoma , Glioma/genética , Glioma/patología , Haploinsuficiencia/genética , Mutación/genética , Inhibidor NF-kappaB alfa/genética , Isocitrato Deshidrogenasa
7.
J Immunother Cancer ; 10(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36220303

RESUMEN

BACKGROUND: Colorectal cancer (CRC) has a high mortality rate and can develop in either colitis-dependent (colitis-associated (CA)-CRC) or colitis-independent (sporadic (s)CRC) manner. There has been a significant debate about whether mast cells (MCs) promote or inhibit the development of CRC. Herein we investigated MC activity throughout the multistepped development of CRC in both human patients and animal models. METHODS: We analyzed human patient matched samples of healthy colon vs CRC tissue alongside conducting a The Cancer Genome Atlas-based immunogenomic analysis and multiple experiments employing genetically engineered mouse (GEM) models. RESULTS: Analyzing human CRC samples revealed that MCs can be active or inactive in this disease. An activated MC population decreased the number of tumor-residing CD8 T cells. In mice, MC deficiency decreased the development of CA-CRC lesions, while it increased the density of tumor-based CD8 infiltration. Furthermore, co-culture experiments revealed that tumor-primed MCs promote apoptosis in CRC cells. In MC-deficient mice, we found that MCs inhibited the development of sCRC lesions. Further exploration of this with several GEM models confirmed that different immune responses alter and are altered by MC activity, which directly alters colon tumorigenesis. Since rescuing MC activity with bone marrow transplantation in MC-deficient mice or pharmacologically inhibiting MC effects impacts the development of sCRC lesions, we explored its therapeutic potential against CRC. MC activity promoted CRC cell engraftment by inhibiting CD8+ cell infiltration in tumors, pharmacologically blocking it inhibits the ability of allograft tumors to develop. This therapeutic strategy potentiated the cytotoxic activity of fluorouracil chemotherapy. CONCLUSION: Therefore, we suggest that MCs have a dual role throughout CRC development and are potential druggable targets against this disease.


Asunto(s)
Colitis , Neoplasias Colorrectales , Animales , Fluorouracilo , Humanos , Mastocitos , Ratones
8.
Brain Pathol ; 32(6): e13107, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35815721

RESUMEN

Telomerase reverse transcriptase (TERT) promoter (pTERT) mutation has often been described as a late event in gliomagenesis and it has been suggested as a prognostic biomarker in gliomas other than 1p19q codeleted tumors. However, the characteristics of isocitrate dehydrogenase (IDH) wild type (wt) (IDHwt), pTERTwt glioblastomas are not well known. We recruited 72 adult IDHwt, pTERTwt glioblastomas and performed methylation profiling, targeted sequencing, and fluorescence in situ hybridization (FISH) for TERT structural rearrangement and ALT (alternative lengthening of telomeres). There was no significant difference in overall survival (OS) between our cohort and a the Cancer Genome Atlas (TCGA) cohort of IDHwt, pTERT mutant (mut) glioblastomas, suggesting that pTERT mutation on its own is not a prognostic factor among IDHwt glioblastomas. Epigenetically, the tumors clustered into classic-like (11%), mesenchymal-like (32%), and LGm6-glioblastoma (GBM) (57%), the latter far exceeding the corresponding proportion seen in the TCGA cohort of IDHwt, pTERTmut glioblastomas. LGm6-GBM-clustered tumors were enriched for platelet derived growth factor receptor alpha (PDGFRA) amplification or mutation (p = 0.008), and contained far fewer epidermal growth factor receptor (EGFR) amplification (p < 0.01), 10p loss (p = 0.001) and 10q loss (p < 0.001) compared with cases not clustered to this group. LGm6-GBM cases predominantly showed ALT (p = 0.038). In the whole cohort, only 35% cases showed EGFR amplification and no case showed combined chromosome +7/-10. Since the cases were already pTERTwt, so the three molecular properties of EGFR amplification, +7/-10, and pTERT mutation may not cover all IDHwt glioblastomas. Instead, EGFR and PDGFRA amplifications covered 67% and together with their mutations covered 71% of cases of this cohort. Homozygous deletion of cyclin dependent kinase inhibitor 2A (CDKN2A)/B was associated with a worse OS (p = 0.031) and was an independent prognosticator in multivariate analysis (p = 0.032). In conclusion, adult IDHwt, pTERTwt glioblastomas show epigenetic clustering different from IDHwt, pTERTmut glioblastomas, and IDHwt glioblastomas which are pTERTwt may however not show EGFR amplification or +7/-10 in a significant proportion of cases. CDKN2A/B deletion is a poor prognostic biomarker in this group.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Telomerasa , Humanos , Isocitrato Deshidrogenasa/genética , Glioblastoma/genética , Glioblastoma/patología , Homocigoto , Hibridación Fluorescente in Situ , Neoplasias Encefálicas/patología , Eliminación de Secuencia , Telomerasa/genética , Mutación/genética , Receptores ErbB/genética , Biomarcadores , Pronóstico
9.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35649412

RESUMEN

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Asunto(s)
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Evolución Molecular , Genes p16 , Glioma/genética , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Recurrencia Local de Neoplasia
10.
Neuro Oncol ; 24(7): 1126-1139, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35212383

RESUMEN

BACKGROUND: DNA methylation abnormalities are pervasive in pituitary neuroendocrine tumors (PitNETs). The feasibility to detect methylome alterations in circulating cell-free DNA (cfDNA) has been reported for several central nervous system (CNS) tumors but not across PitNETs. The aim of the study was to use the liquid biopsy (LB) approach to detect PitNET-specific methylation signatures to differentiate these tumors from other sellar diseases. METHODS: We profiled the cfDNA methylome (EPIC array) of 59 serum and 41 plasma LB specimens from patients with PitNETs and other CNS diseases (sellar tumors and other pituitary non-neoplastic diseases, lower-grade gliomas, and skull-base meningiomas) or nontumor conditions, grouped as non-PitNET. RESULTS: Our results indicated that despite quantitative and qualitative differences between serum and plasma cfDNA composition, both sources of LB showed that patients with PitNETs presented a distinct methylome landscape compared to non-PitNETs. In addition, LB methylomes captured epigenetic features reported in PitNET tissue and provided information about cell-type composition. Using LB-derived PitNETs-specific signatures as input to develop machine-learning predictive models, we generated scores that distinguished PitNETs from non-PitNETs conditions, including sellar tumor and non-neoplastic pituitary diseases, with accuracies above ~93% in independent cohort sets. CONCLUSIONS: Our results underpin the potential application of methylation-based LB profiling as a noninvasive approach to identify clinically relevant epigenetic markers to diagnose and potentially impact the prognostication and management of patients with PitNETs.


Asunto(s)
Ácidos Nucleicos Libres de Células , Tumores Neuroendocrinos , Neoplasias Hipofisarias , Biomarcadores de Tumor/genética , Metilación de ADN , Humanos , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/patología
11.
Sci Adv ; 7(48): eabf6123, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34818047

RESUMEN

Critical developmental "master transcription factors" (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.

13.
Mod Pathol ; 34(7): 1245-1260, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33692446

RESUMEN

WHO 2016 classified glioblastomas into IDH-mutant and IDH-wildtype with the former having a better prognosis but there was no study on IDH-mutant primary glioblastomas only, as previous series included secondary glioblastomas. We recruited a series of 67 IDH-mutant primary glioblastomas/astrocytoma IV without a prior low-grade astrocytoma and examined them using DNA-methylation profiling, targeted sequencing, RNA sequencing and TERT promoter sequencing, and correlated the molecular findings with clinical parameters. The median OS of 39.4 months of 64 cases and PFS of 25.9 months of 57 cases were better than the survival data of IDH-wildtype glioblastomas and IDH-mutant secondary glioblastomas retrieved from datasets. The molecular features often seen in glioblastomas, such as EGFR amplification, combined +7/-10, and TERT promoter mutations were only observed in 6/53 (11.3%), 4/53 (7.5%), and 2/67 (3.0%) cases, respectively, and gene fusions were found only in two cases. The main mechanism for telomere maintenance appeared to be alternative lengthening of telomeres as ATRX mutation was found in 34/53 (64.2%) cases. In t-SNE analyses of DNA-methylation profiles, with an exceptional of one case, a majority of our cases clustered to IDH-mutant high-grade astrocytoma subclass (40/53; 75.5%) and the rest to IDH-mutant astrocytoma subclass (12/53; 22.6%). The latter was also enriched with G-CIMP high cases (12/12; 100%). G-CIMP-high status and MGMT promoter methylation were independent good prognosticators for OS (p = 0.022 and p = 0.002, respectively) and TP53 mutation was an independent poor prognosticator (p = 0.013) when correlated with other clinical parameters. Homozygous deletion of CDKN2A/B was not correlated with OS (p = 0.197) and PFS (p = 0.278). PDGFRA amplification or mutation was found in 16/59 (27.1%) of cases and was correlated with G-CIMP-low status (p = 0.010). Aside from the three well-known pathways of pathogenesis in glioblastomas, chromatin modifying and mismatch repair pathways were common aberrations (88.7% and 20.8%, respectively), the former due to high frequency of ATRX involvement. We conclude that IDH-mutant primary glioblastomas have better prognosis than secondary glioblastomas and have major molecular differences from other commoner glioblastomas. G-CIMP subgroups, MGMT promoter methylation, and TP53 mutation are useful prognostic adjuncts.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Adulto , Astrocitoma/mortalidad , Astrocitoma/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Análisis Mutacional de ADN , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Mutación , Pronóstico
14.
Neuro Oncol ; 23(8): 1292-1303, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33631002

RESUMEN

BACKGROUND: Distinct genome-wide methylation patterns cluster pituitary neuroendocrine tumors (PitNETs) into molecular groups associated with specific clinicopathological features. Here we aim to identify, characterize, and validate methylation signatures that objectively classify PitNET into clinicopathological groups. METHODS: Combining in-house and publicly available data, we conducted an analysis of the methylome profile of a comprehensive cohort of 177 tumors (Panpit cohort) and 20 nontumor specimens from the pituitary gland. We also retrieved methylome data from an independent PitNET cohort (N = 86) to validate our findings. RESULTS: We identified three methylation clusters associated with adenohypophyseal cell lineages and functional status using an unsupervised approach. Differentially methylated probes (DMP) significantly distinguished the Panpit clusters and accurately assigned the samples of the validation cohort to their corresponding lineage and functional subtypes memberships. The DMPs were annotated in regulatory regions enriched with enhancer elements, associated with pathways and genes involved in pituitary cell identity, function, tumorigenesis, and invasiveness. Some DMPs correlated with genes with prognostic and therapeutic values in other intra- or extracranial tumors. CONCLUSIONS: We identified and validated methylation signatures, mainly annotated in enhancer regions that distinguished PitNETs by distinct adenohypophyseal cell lineages and functional status. These signatures provide the groundwork to develop an unbiased approach to classifying PitNETs according to the most recent classification recommended by the 2017 WHO and to explore their biological and clinical relevance in these tumors.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Hipofisarias , Estudios de Cohortes , Metilación de ADN , Humanos , Tumores Neuroendocrinos/genética , Neoplasias Hipofisarias/genética , Pronóstico
15.
Neuro Oncol ; 23(9): 1494-1508, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33560371

RESUMEN

BACKGROUND: The detection of somatic mutations in cell-free DNA (cfDNA) from liquid biopsy has emerged as a noninvasive tool to monitor the follow-up of cancer patients. However, the significance of cfDNA clinical utility remains uncertain in patients with brain tumors, primarily because of the limited sensitivity cfDNA has to detect real tumor-specific somatic mutations. This unresolved challenge has prevented accurate follow-up of glioma patients with noninvasive approaches. METHODS: Genome-wide DNA methylation profiling of tumor tissue and serum cfDNA of glioma patients. RESULTS: Here, we developed a noninvasive approach to profile the DNA methylation status in the serum of patients with gliomas and identified a cfDNA-derived methylation signature that is associated with the presence of gliomas and related immune features. By testing the signature in an independent discovery and validation cohorts, we developed and verified a score metric (the "glioma-epigenetic liquid biopsy score" or GeLB) that optimally distinguished patients with or without glioma (sensitivity: 100%, specificity: 97.78%). Furthermore, we found that changes in GeLB score reflected clinicopathological changes during surveillance (eg, progression, pseudoprogression, and response to standard or experimental treatment). CONCLUSIONS: Our results suggest that the GeLB score can be used as a complementary approach to diagnose and follow up patients with glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Metilación de ADN , Epigenómica , Glioma/diagnóstico , Glioma/genética , Humanos , Biopsia Líquida
16.
Acta Neuropathol ; 140(6): 919-949, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33009951

RESUMEN

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Xenoinjertos/inmunología , Organoides/patología , Temozolomida/uso terapéutico , Animales , Neoplasias Encefálicas/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioma/genética , Xenoinjertos/efectos de los fármacos , Humanos , Ratones , Recurrencia Local de Neoplasia/genética , Organoides/inmunología , Medicina de Precisión/métodos , Ratas
17.
Cancer Res ; 80(9): 1819-1832, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32127355

RESUMEN

RING-finger E3 ligases are instrumental in the regulation of inflammatory cascades, apoptosis, and cancer. However, their roles are relatively unknown in TGFß/SMAD signaling. SMAD3 and its adaptors, such as ß2SP, are important mediators of TGFß signaling and regulate gene expression to suppress stem cell-like phenotypes in diverse cancers, including hepatocellular carcinoma (HCC). Here, PJA1, an E3 ligase, promoted ubiquitination and degradation of phosphorylated SMAD3 and impaired a SMAD3/ß2SP-dependent tumor-suppressing pathway in multiple HCC cell lines. In mice deficient for SMAD3 (Smad3 +/-), PJA1 overexpression promoted the transformation of liver stem cells. Analysis of genes regulated by PJA1 knockdown and TGFß1 signaling revealed 1,584 co-upregulated genes and 1,280 co-downregulated genes, including many implicated in cancer. The E3 ligase inhibitor RTA405 enhanced SMAD3-regulated gene expression and reduced growth of HCC cells in culture and xenografts of HCC tumors, suggesting that inhibition of PJA1 may be beneficial in treating HCC or preventing HCC development in at-risk patients.Significance: These findings provide a novel mechanism regulating the tumor suppressor function of TGFß in liver carcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Regulación hacia Abajo , Eliminación de Gen , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Xenoinjertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Células Madre Neoplásicas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Fosforilación , ARN Interferente Pequeño , Proteínas Smad/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/deficiencia , Proteína smad3/genética , Espectrina/genética , Espectrina/metabolismo , Células Madre/patología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Regulación hacia Arriba , Secuenciación del Exoma
18.
Gastroenterology ; 158(1): 238-252, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31585122

RESUMEN

BACKGROUND & AIMS: We studied interactions among proteins of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which interact with microbes, and transforming growth factor beta (TGFB) signaling pathway, which is often altered in colorectal cancer cells. We investigated mechanisms by which CEACAM proteins inhibit TGFB signaling and alter the intestinal microbiome to promote colorectal carcinogenesis. METHODS: We collected data on DNA sequences, messenger RNA expression levels, and patient survival times from 456 colorectal adenocarcinoma cases, and a separate set of 594 samples of colorectal adenocarcinomas, in The Cancer Genome Atlas. We performed shotgun metagenomic sequencing analyses of feces from wild-type mice and mice with defects in TGFB signaling (Sptbn1+/- and Smad4+/-/Sptbn1+/-) to identify changes in microbiota composition before development of colon tumors. CEACAM protein and its mutants were overexpressed in SW480 and HCT116 colorectal cancer cell lines, which were analyzed by immunoblotting and proliferation and colony formation assays. RESULTS: In colorectal adenocarcinomas, high expression levels of genes encoding CEACAM proteins, especially CEACAM5, were associated with reduced survival times of patients. There was an inverse correlation between expression of CEACAM genes and expression of TGFB pathway genes (TGFBR1, TGFBR2, and SMAD3). In colorectal adenocarcinomas, we also found an inverse correlation between expression of genes in the TGFB signaling pathway and genes that regulate stem cell features of cells. We found mutations encoding L640I and A643T in the B3 domain of human CEACAM5 in colorectal adenocarcinomas; structural studies indicated that these mutations would alter the interaction between CEACAM5 and TGFBR1. Overexpression of these mutants in SW480 and HCT116 colorectal cancer cell lines increased their anchorage-independent growth and inhibited TGFB signaling to a greater extent than overexpression of wild-type CEACAM5, indicating that they are gain-of-function mutations. Compared with feces from wild-type mice, feces from mice with defects in TGFB signaling had increased abundance of bacterial species that have been associated with the development of colon tumors, including Clostridium septicum, and decreased amounts of beneficial bacteria, such as Bacteroides vulgatus and Parabacteroides distasonis. CONCLUSION: We found expression of CEACAMs and genes that regulate stem cell features of cells to be increased in colorectal adenocarcinomas and inversely correlated with expression of TGFB pathway genes. We found colorectal adenocarcinomas to express mutant forms of CEACAM5 that inhibit TGFB signaling and increase proliferation and colony formation. We propose that CEACAM proteins disrupt TGFB signaling, which alters the composition of the intestinal microbiome to promote colorectal carcinogenesis.


Asunto(s)
Antígeno Carcinoembrionario/genética , Carcinogénesis/genética , Neoplasias Colorrectales/genética , Microbioma Gastrointestinal/fisiología , Transducción de Señal/genética , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Antígeno Carcinoembrionario/metabolismo , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/mortalidad , Modelos Animales de Enfermedad , Heces/microbiología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Mutación con Ganancia de Función , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Metagenómica , Ratones , Ratones Transgénicos , Dominios Proteicos/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Esferoides Celulares , Análisis de Supervivencia , Factor de Crecimiento Transformador beta/metabolismo
19.
Neuro Oncol ; 22(4): 480-492, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31665443

RESUMEN

BACKGROUND: Early detection of increased aggressiveness of brain tumors is a major challenge in the field of neuro-oncology because of the inability of traditional imaging to uncover it. Isocitrate dehydrogenase (IDH)-mutant gliomas represent an ideal model system to study the molecular mechanisms associated with tumorigenicity because they appear indolent and non-glycolytic initially, but eventually a subset progresses toward secondary glioblastoma with a Warburg-like phenotype. The mechanisms and molecular features associated with this transformation are poorly understood. METHODS: We employed model systems for IDH1 mutant (IDH1mut) gliomas with different growth and proliferation rates in vivo and in vitro. We described the metabolome, transcriptome, and epigenome of these models in order to understand the link between their metabolism and the tumor biology. To verify whether this metabolic reprogramming occurs in the clinic, we analyzed data from The Cancer Genome Atlas. RESULTS: We reveal that the aggressive glioma models have lost DNA methylation in the promoters of glycolytic enzymes, especially lactate dehydrogenase A (LDHA), and have increased mRNA and metabolite levels compared with the indolent model. We find that the acquisition of the high glycolytic phenotype occurs at the glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP)-high molecular subtype in patients and is associated with the worst outcome. CONCLUSION: We propose very early monitoring of lactate levels as a biomarker of metabolic reprogramming and tumor aggressiveness.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Metilación de ADN , Glioma/genética , Guanina , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación , Fenotipo
20.
Neurooncol Adv ; 1(1): vdz015, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31667475

RESUMEN

BACKGROUND: IDH-mutant glioblastoma is classified by the 2016 CNS WHO as a group with good prognosis. However, the actual number of cases examined in the literature is relatively small. We hypothesize that IDH-mutant glioblastoma is not a uniform group and should be further stratified. METHODS: We conducted methylation profiles and estimated copy number variations of 57 IDH-mutant glioblastomas. RESULTS: Our results showed that 59.6% and 40.4% of tumors belonged to glioma-CpG island methylator phenotype (G-CIMP)-high and G-CIMP-low methylation subgroups, respectively. G-CIMP-low subgroup was associated with significantly worse overall survival (OS) as compared to G-CIMP-high (P = .005). CDKN2A deletion (42.1%) was the most common gene copy number variation, and was significantly associated with G-CIMP-low subgroup (P = .004). Other frequent copy number changes included mesenchymal-epithelial transition (MET) (5.3%), CCND2 (19.3%), PDGFRA (14.0%), CDK4 (12.3%), and EGFR (12.3%) amplification. Both CDKN2A deletion (P = .036) and MET amplification (P < .001) were associated with poor OS in IDH-mutant glioblastomas. Combined epigenetic signature and gene copy number variations separated IDH-mutant glioblastomas into Group 1 (G-CIMP-high), Group 2 (G-CIMP-low without CDKN2A nor MET alteration), and Group 3 (G-CIMP-low with CDKN2A and/or MET alteration). Survival analysis revealed Groups 1 and 2 exhibited a favorable OS (median survival: 619 d [20.6 mo] and 655 d [21.8 mo], respectively). Group 3 exhibited a significant shorter OS (median survival: 252 d [8.4 mo]). Multivariable analysis confirmed the independent prognostic significance of our Groups. CONCLUSIONS: IDH-mutant glioblastomas should be stratified for risk with combined epigenetic signature and CDKN2A/MET status and some cases have poor outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...