Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 14(48): e1803313, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30328292

RESUMEN

Paper is emerging as a promising flexible, high surface-area substrate for various new applications such as printed electronics, energy storage, and paper-based diagnostics. Many applications, however, require paper that reaches metallic conductivity levels, ideally at low cost. Here, an aqueous electroless copper-plating method is presented, which forms a conducting thin film of fused copper nanoparticles on the surface of the cellulose fibers. This paper can be used as a current collector for anodes of lithium-ion batteries. Owing to the porous structure and the large surface area of cellulose fibers, the copper-plated paper-based half-cell of the lithium-ion battery exhibits excellent rate performance and cycling stability, and even outperforms commercially available planar copper foil-based anode at ultra-high charge/discharge rates of 100 C and 200 C. This mechanically robust metallic-paper composite has promising applications as the current collector for light-weight, flexible, and foldable paper-based 3D Li-ion battery anodes.

2.
Adv Sci (Weinh) ; 3(2): 1500305, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27774392

RESUMEN

A mixed ionic-electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio-phene):-poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

3.
Adv Mater ; 27(26): 3909-14, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26016815

RESUMEN

Conducting polymers with bipolar membranes (a complementary stack of selective membranes) may be used to rectify current. Integrating a bipolar membrane into a polymer electrochromic display obviates the need for an addressing backplane while increasing the device's bistability. Such devices can be made from solution-processable materials.

4.
Nat Mater ; 10(6): 429-33, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21532583

RESUMEN

Thermoelectric generators (TEGs) transform a heat flow into electricity. Thermoelectric materials are being investigated for electricity production from waste heat (co-generation) and natural heat sources. For temperatures below 200 °C, the best commercially available inorganic semiconductors are bismuth telluride (Bi(2)Te(3))-based alloys, which possess a figure of merit ZT close to one. Most of the recently discovered thermoelectric materials with ZT>2 exhibit one common property, namely their low lattice thermal conductivities. Nevertheless, a high ZT value is not enough to create a viable technology platform for energy harvesting. To generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs. This requires thermoelectric materials that are readily synthesized, air stable, environmentally friendly and solution processable to create patterns on large areas. Here we show that conducting polymers might be capable of meeting these demands. The accurate control of the oxidation level in poly(3,4-ethylenedioxythiophene) (PEDOT) combined with its low intrinsic thermal conductivity (λ=0.37 W m(-1) K(-1)) yields a ZT=0.25 at room temperature that approaches the values required for efficient devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA