Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(16): 3972-3980, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38624173

RESUMEN

Complex molten chloride salt mixtures of uranium, magnesium, and sodium are top candidates for promising nuclear energy technologies to produce electricity based on molten salt reactors. From a local structural perspective, LaCl3 is similar to UCl3 and hence a good proxy to study these complex salt mixtures. As fission products, lanthanide salts and their mixtures are also very important in their own right. This article describes from an experimental and theory perspective how very different the structural roles of MgCl2 and NaCl are in mixtures with LaCl3. We find that, whereas MgCl2 becomes an integral part of multivalent ionic networks, NaCl separates them. In a recent article (J. Am. Chem. Soc. 2022, 144, 21751-21762) we have called the disruptive behavior of NaCl "the spacer salt effect". Because of the heterogeneous nature of these salt mixtures, there are multiple structural motifs in the melt, each with its particular free energetics. Our work identifies and quantifies these; it also elucidates the mechanisms through which Cl- ions exchange between Mg2+-rich and La3+-rich environments.

2.
ACS Appl Mater Interfaces ; 15(10): 13772-13782, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877214

RESUMEN

Understanding the mechanisms leading to the degradation of alloys in molten salts at elevated temperatures is significant for developing several key energy generation and storage technologies, including concentrated solar and next-generation nuclear power plants. Specifically, the fundamental mechanisms of different types of corrosion leading to various morphological evolution characteristics for changing reaction conditions between the molten salt and alloy remain unclear. In this work, the three-dimensional (3D) morphological evolution of Ni-20Cr in KCl-MgCl2 is studied at 600 °C by combining in situ synchrotron X-ray and electron microscopy techniques. By further comparing different morphology evolution characteristics in the temperature range of 500-800 °C, the relative rates between diffusion and reaction at the salt-metal interface lead to different morphological evolution pathways, including intergranular corrosion and percolation dealloying. In this work, the temperature-dependent mechanisms of the interactions between metals and molten salts are discussed, providing insights for predicting molten salt corrosion in real-world applications.

3.
J Am Chem Soc ; 144(47): 21751-21762, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36379028

RESUMEN

Lanthanides are important fission products in molten salt reactors, and understanding their structure and that of their mixtures is relevant to many scientific and technological problems including the recovery and separation of rare earth elements using molten salt electrolysis. The literature on molten salts and specifically on LaCl3 and LaCl3-NaCl mixtures is often fragmented, with different experiments and simulations coinciding in their explanation for certain structural results but contradicting or questioning for others. Given the very practical importance that actinide and lanthanide salts have for energy applications, it is imperative to arrive at a clear unified picture of their local and intermediate-range structure in the neat molten state and when mixed with other salts. This article aims to unequivocally answer a set of specific questions: is it correct to think of long-lived octahedral coordination structures for La3+? What is the nature as a function of temperature of networks and intermediate-range order particularly upon dilution of the trivalent ion salt? Is the so-called scattering first sharp diffraction peak (FSDP) for neat LaCl3 truly indicative of intermediate-range order? If so, why is there a new lower-q peak when mixed with NaCl? Are X-ray scattering and Raman spectroscopy results fully consistent and easily described by simulation results? We will show that answers to these questions require that we abandon the idea of a most prominent coordination state for M3+ ions and instead think of multiple competing coordination states in exchange due to significant thermal energy in the molten state.


Asunto(s)
Elementos de la Serie de los Lantanoides , Sales (Química) , Sales (Química)/química , Cloruro de Sodio , Iones/química , Temperatura
4.
Chem Sci ; 12(23): 8026-8035, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34194692

RESUMEN

Enhancing the solar energy storage and power delivery afforded by emerging molten salt-based technologies requires a fundamental understanding of the complex interplay between structure and dynamics of the ions in the high-temperature media. Here we report results from a comprehensive study integrating synchrotron X-ray scattering experiments, ab initio molecular dynamics simulations and rate theory concepts to investigate the behavior of dilute Cr3+ metal ions in a molten KCl-MgCl2 salt. Our analysis of experimental results assisted by a hybrid transition state-Marcus theory model reveals unexpected clustering of chromium species leading to the formation of persistent octahedral Cr-Cr dimers in the high-temperature low Cr3+ concentration melt. Furthermore, our integrated approach shows that dynamical processes in the molten salt system are primarily governed by the charge density of the constituent ions, with Cr3+ exhibiting the slowest short-time dynamics. These findings challenge several assumptions regarding specific ionic interactions and transport in molten salts, where aggregation of dilute species is not statistically expected, particularly at high temperature.

5.
Nat Commun ; 12(1): 3441, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108466

RESUMEN

Three-dimensional bicontinuous porous materials formed by dealloying contribute significantly to various applications including catalysis, sensor development and energy storage. This work studies a method of molten salt dealloying via real-time in situ synchrotron three-dimensional X-ray nano-tomography. Quantification of morphological parameters determined that long-range diffusion is the rate-determining step for the dealloying process. The subsequent coarsening rate was primarily surface diffusion controlled, with Rayleigh instability leading to ligament pinch-off and creating isolated bubbles in ligaments, while bulk diffusion leads to a slight densification. Chemical environments characterized by X-ray absorption near edge structure spectroscopic imaging show that molten salt dealloying prevents surface oxidation of the metal. In this work, gaining a fundamental mechanistic understanding of the molten salt dealloying process in forming porous structures provides a nontoxic, tunable dealloying technique and has important implications for molten salt corrosion processes, which is one of the major challenges in molten salt reactors and concentrated solar power plants.

6.
J Phys Chem B ; 125(22): 5971-5982, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34037400

RESUMEN

In this work, we resolve a long-standing issue concerning the local structure of molten MgCl2 by employing a multimodal approach, including X-ray scattering and Raman spectroscopy, along with the theoretical modeling of the experimental spectra based on ab initio molecular dynamics (AIMD) simulations utilizing several density functional theory (DFT) methods. We demonstrate the reliability of AIMD simulations in achieving excellent agreement between the experimental and simulated spectra for MgCl2 and 50 mol % MgCl2 + 50 mol % KCl, and ZnCl2, thus allowing structural insights not directly available from experiment alone. A thorough computational analysis using five DFT methods provides a convergent view that octahedrally coordinated magnesium in pure MgCl2 upon melting preferentially coordinates with five chloride anions to form distorted square pyramidal polyhedra that are connected via corners and to a lesser degree via edges. This is contrasted with the results for ZnCl2, which does not change its tetrahedral coordination on melting. Although the five-coordinate MgCl53- complex was not considered in the early literature, together with an increasing tendency to form a tetrahedrally coordinated complex with decreasing the MgCl2 content in the mixture with alkali metal chloride systems, current work reconciles the results of most previous seemingly contradictory experimental studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...