Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Gene ; 874: 147482, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37187244

RESUMEN

Seed aging is a major problem which is caused by various factors such as unfavorable physiological, biochemical, and metabolic alterations in seed. Lipoxygenase (LOXs), an oxidoreductase enzyme that catalyzes the oxidation of polyunsaturated fatty acids, acts as a negative regulator in seed viability and vigour during storage. In this study, we identified ten putative LOX gene family members in the chickpea genome, designated as "CaLOX" which are mainly located in the cytoplasm and chloroplast. These genes share different physiochemical properties and similarities in their gene structures and conserved functional regions. The promoter region contained the cis-regulatory elements and transcription binding factors, which were mainly linked to biotic and abiotic stress, hormones, and light responsiveness. In this study, chickpea seeds were treated with accelerated aging treatment for 0, 2, and 4 days at 45 °C and 85 % relative humidity. Increased level of reactive oxygen species, malondialdehyde, electrolyte leakage, proline, lipoxygenase (LOX) activity, and decreased catalase activity indicates cellular dysfunction which demonstrates seed deterioration. Quantitative real-time analysis reveals that 6 CaLOX genes were upregulated, and 4 CaLOX genes were downregulated during the seed aging process in chickpea. This comprehensive study will reveal the role of the CaLOX gene in response to aging treatment. The identified gene may be used to develop better-quality seeds in chickpea.


Asunto(s)
Cicer , Cicer/genética , Cicer/metabolismo , Lipooxigenasa/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Antioxidantes/metabolismo , Semillas/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Front Genome Ed ; 5: 1094965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911238

RESUMEN

Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.

3.
Int J Biol Macromol ; 234: 123757, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805507

RESUMEN

Fibrillin family members play multiple roles in growth, development, and protection against abiotic stress. In this study, we identified 12 potential CaFBNs that are ranging from 25 kDa-42.92 kDa and are mostly basic. These proteins were hydrophilic in nature and generally resided in the chloroplast. The CaFBN genes were located on different chromosomes like 1, 4, 5, and 7. All FBNs shared conserved motifs and possessed a higher number of stress-responsive elements. For evolutionary analysis, a phylogenetic tree of CaFBNs with other plants' FBNs was constructed and clustered into 11 FBN subgroups. For expression analysis, 21 day old chickpea seedling was exposed to dehydration stress by withholding water. We also performed various physiological and biochemical analyses to check that plant changes at the physiological and cellular levels while undergoing stress conditions. The transcript expression of CaFBNs was higher in aerial parts, especially in stems and leaves. Dehydration-specific transcriptome and qPCR analysis showed that FBN-1, FBN-2, and FBN-6 were highly expressed. In addition, our study provides a comprehensive overview of the FBN protein family and their importance during the dehydration stress condition in Cicer arietinum.


Asunto(s)
Cicer , Cicer/genética , Cicer/metabolismo , Filogenia , Sequías , Fibrilinas/genética , Fibrilinas/metabolismo , Deshidratación/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...