Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
ACS Macro Lett ; 3(7): 602-606, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25419487

RESUMEN

Improving the therapeutic efficacy and reducing systemic side effects of drugs is an important aspect in chemotherapy. The strategy presented here is the use of cisplatin loaded, temperature-sensitive, hydrogel nanoparticles (CisPt-NPs) and their ability to deliver and release chemodrugs selectively, based on thermal stimuli. The specially synthesized CisPt-NPs show a temperature-dependent increase of cisplatin release, at neutral pH (as in blood and normal tissue), in both the presence and absence of common metallic ions, as well as at the low pH found in lysosomes, where endocytosed NPs often localize. These CisPt-NPs were uptaken by breast cancer MDA-MB-435 cells, via endocytosis, and then mostly localized in the lysosomes. The in vitro cytotoxicity tests show that these CisPt-NPs have a significantly better efficacy at the slightly elevated temperatures. Potential applications are discussed.

2.
Proc SPIE Int Soc Opt Eng ; 9040: 90400S, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25309102

RESUMEN

Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the sound speed of breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data. However, the discrepancy between the sound speed values could be easily handled by uniformly increasing the DICOM sound speed by approximately 0.5 m/s. These results suggest that there is no fundamental difference in sound speed measurement for the two systems and support combining data generated with these instruments in future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA