Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 24(7): 5991-6001, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27106074

RESUMEN

In this work, mesoporous silica mobil composition of matter no. 41 (MCM-41) was synthesized by the sol-gel method. Two different surface modifications were made to transform this material into a very active adsorbent and catalyst support: (i) impregnation of iron nanoparticles and (ii) hydrophobization via chemical vapor deposition (CVD) with ethanol. The materials prepared with different iron contents, i.e., 2.5, 5, and 10 %, after hydrophobization, were characterized by several techniques. CHN analysis and Raman spectroscopy proved that approximately 15 % of carbon is deposited during CVD process mainly as organized carbonaceous structures. The specific surface area was determined by the BET method as up to 1080 m2 g-1, which explains the excellent results of the materials in the adsorption of model dyes methylene blue and indigo carmine. Mössbauer spectroscopy, thermogravimetric (TG)/DTG analysis, and transmission electron microscopy (TEM) images showed that the iron supported may be partially reduced during the CVD process to Fe2+ species, which are stabilized by the carbon coating. This iron species plays an important role in the oxidation of different contaminants, such as quinoline and methylene blue. The results obtained in the catalytic tests showed to be very promising.


Asunto(s)
Dióxido de Silicio/química , Purificación del Agua/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Hierro/química , Nanopartículas del Metal , Nanotecnología , Porosidad
2.
Dalton Trans ; 42(16): 5778-95, 2013 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-23450253

RESUMEN

We herein present the synthesis and X-ray structures of five copper(II) complexes of formulae [Cu(bpca)(CF3SO3)(H2O)]·H2O (1), [Cu(bpca)(Phpr)(H2O)]·3/2H2O (2), {[Cu(bpca)]2[Cu(opba)(H2O)]}·H2O (3), {[Cu(bpca)]2(H2opba)}2·6H2O (4) and [Cu(bpca)(EtH2opba)]n (5), where bpca = bis(2-pyridylcarbonyl)amidate, Phpr = 3-phenylpropionate, CF3SO3(−) = triflate (anion of the trifluoromethanesulphonic acid), H4opba = N,N'-1,2-phenylenebis(oxamic acid), and EtH3opba = monoethyl ester derivative of the H4opba. 1 and 2 are mononuclear copper(II) complexes where the copper atom is five-coordinate in distorted square pyramidal surroundings with a tridentate bpca and a water molecule (1)/carboxylate oxygen (2) building the basal plane and a triflate oxygen (1)/water molecule (2) filling the apical position. 3 is a neutral tricopper(II) complex where the [Cu(opba)(H2O)]2− unit acts as a bis-bidentate ligand toward two peripheral [Cu(bpca)]+ fragments. The three crystallographically independent copper(II) ions in 3 are five-coordinate with two nitrogen and two oxygen atoms (inner copper atom)/three bpca-nitrogen and an oxamate oxygen (outer copper atom) building the basal plane plus a water molecule (inner copper)/an oxamate oxygen (outer copper) in the apical position (inner copper atom) of somewhat distorted square pyramidal surroundings. 4 is a centrosymmetric tetracopper(II) compound where four [Cu(bpca)]+ fragments are assembled by two H2opba2− groups adopting an unusual bidentate/bis-monodentate bridging mode. The two crystallographically independent copper(II) ions in 4 are also five-coordinate having the three bpca-nitrogens in basal positions, the other two sites of the distorted square pyramid being filled by two oxygens of either a bidentate oxamate (at one copper centre) or two bis-monodentate oxamates (at the other copper atom). 5 is a zigzag chain of [Cu(bpca)(H2O)]+ units which are connected through the EtH2opba− ligand adopting a bidentate/monodentate bridging mode across the monodeprotonated oxamate group. Each copper(II) ion in 5 is six-coordinate in an elongated octahedral CuN3O3 chromophore. The magnetic properties of 3­5 were investigated in the temperature range 1.9­300 K. 3 exhibits an intermediate intramolecular antiferromagnetic interaction [J = -65.8(2) cm(-1) with the Hamiltonian H = -J(S(Cu1)·S(Cu2) + S(Cu2)·S(Cu3))] which leads to a low-lying spin doublet at low temperatures. A weak antiferromagnetic coupling between the inner copper(II) ions occurs in 4 [J = -2.36(2) cm(-1), H = -JS1·S2)] and a very small intrachain antiferromagnetic interaction is observed in 5 [J = -0.17(1) cm(-1) with H = -J∑(i)S(i)·S(i+1)]. These values are analyzed by means of simple orbital symmetry considerations and compared with those previously reported for parent systems.

3.
J Hazard Mater ; 241-242: 73-81, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23036701

RESUMEN

New magnetic composites based on metallic nickel and molybdenum carbide, Ni/Mo(2)C, have been produced via catalytic chemical vapor deposition from ethanol. Scanning electron microscopy, thermal analysis, Raman spectroscopy and X-ray diffraction studies suggest that the CVD process occurs in a single step. This process involves the reduction of NiMo oxides at different temperatures (700, 800 and 900°C) with catalytic deposition of carbon from ethanol producing molybdenum carbide on Ni surface. In the absence of molybdenum the formation of Ni/C was observed. The magnetic molybdenum carbide was successfully used as pollutants removal by adsorption of sulfur and nitrogen compounds from liquid fuels and model dyes such as methylene blue and indigo carmine. The dibenzothiofene adsorption process over Ni/Mo(2)C reached approximately 20 mg g(-1), notably higher than other materials described in the literature and also removed almost all methylene blue dye. The great advantage of these carbide composites is that they may be easily recovered magnetically and reused.


Asunto(s)
Contaminantes Ambientales/aislamiento & purificación , Gasolina/normas , Imanes/química , Molibdeno/química , Níquel/química , Petróleo/normas , Adsorción , Catálisis , Gasolina/análisis , Carmin de Índigo/aislamiento & purificación , Azul de Metileno/aislamiento & purificación , Microscopía Electrónica de Rastreo , Estructura Molecular , Petróleo/análisis , Espectrometría Raman , Propiedades de Superficie , Tiofenos/aislamiento & purificación , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...