Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Phys Rev E ; 105(2-1): 024106, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35291114

RESUMEN

We introduce an alternative route for obtaining reliable cyclic engines, based on two interacting Brownian particles under time-periodic drivings which can be used as a work-to-work converter or a heat engine. Exact expressions for the thermodynamic fluxes, such as power and heat, are obtained using the framework of stochastic thermodynamic. We then use these exact expression to optimize the driving protocols with respect to output forces, their phase difference. For the work-to-work engine, they are solely expressed in terms of Onsager coefficients and their derivatives, whereas nonlinear effects start to play a role since the particles are at different temperatures. Our results suggest that stronger coupling generally leads to better performance, but careful design is needed to optimize the external forces.

2.
Phys Rev E ; 106(6-1): 064125, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671179

RESUMEN

Brownian particles interacting sequentially with distinct temperatures and driving forces at each stroke have been tackled as a reliable alternative for the construction of engine setups. However, they can behave very inefficiently depending on the driving used for the work source and/or when temperatures of each stage are very different from each other. Inspired by some models for molecular motors and recent experimental studies, a coupling between driving and velocities is introduced and detail investigated from stochastic thermodynamics. Exact expressions for thermodynamic quantities and distinct maximization routes have been obtained. The search of an optimal coupling provides a substantial increase of engine performance (mainly efficiency), even for large ΔT. A simple and general argument for the optimal coupling can be estimated, irrespective of the driving and other model details.


Asunto(s)
Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...