Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1097909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645222

RESUMEN

Bacteria provide ecosystem services (e.g., biogeochemical cycling) that regulate climate, purify water, and produce food and other commodities, yet their distribution and likely responses to change or intervention are difficult to predict. Using bacterial 16S rRNA gene surveys of 1,381 soil samples from the Biomes of Australian Soil Environment (BASE) dataset, we were able to model relative abundances of soil bacterial taxonomic groups and describe bacterial niche space and optima. Hold out sample validated hypothetical causal networks (structural equation models; SEM) were able to predict the relative abundances of bacterial taxa from environmental data and elucidate soil bacterial niche space. By using explanatory SEM properties as indicators of microbial traits, we successfully predicted soil bacterial response, and in turn potential ecosystem service response, to near-term expected changes in the Australian climate. The methods developed enable prediction of continental-scale changes in bacterial relative abundances, and demonstrate their utility in predicting changes in bacterial function and thereby ecosystem services. These capabilities will be strengthened in the future with growing genome-level data.

2.
Glob Chang Biol ; 28(13): 4211-4224, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35377512

RESUMEN

Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane (CH4 ) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chemistry within frost boils by introducing soluble organic carbon and nutrients, potentially influencing microbial CH4 oxidation. CH4 oxidation in soils, however, requires a spatio-temporal convergence of ecological factors to occur. Spatial delineation of microbial activity with respect to these key microbial and biogeochemical factors at relevant scales is experimentally challenging in inherently complex and heterogeneous natural soil matrices. This work aims to overcome this barrier by spatially linking microbial CH4 oxidation with C/N chemistry and metagenomic characteristics. This is achieved by using positron-emitting radiotracers to visualize millimeter-scale active CH4 uptake areas in Arctic soils with and without diapirism. X-ray absorption spectroscopic speciation of active and inactive areas shows CH4 uptake spatially associates with greater proportions of inorganic N in diapiric frost boils. Metagenomic analyses reveal Ralstonia pickettii associates with CH4 uptake across soils along with pertinent CH4 and inorganic N metabolism associated genes. This study highlights the critical relationship between CH4 and N cycles in Arctic soils, with potential implications for better understanding future climate. Furthermore, our experimental framework presents a novel, widely applicable strategy for unraveling ecological relationships underlying greenhouse gas dynamics under global change.


Asunto(s)
Forunculosis , Gases de Efecto Invernadero , Animales , Electrones , Gases de Efecto Invernadero/análisis , Metano/análisis , Suelo/química
3.
Appl Environ Microbiol ; 88(10): e0027322, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35481756

RESUMEN

Holobiont bacterial community assembly processes are an essential element to understanding the plant microbiome. To elucidate these processes, leaf, root, and rhizosphere samples were collected from eight lines of Brassica napus in Saskatchewan over the course of 10 weeks. We then used ecological null modeling to disentangle the community assembly processes over the growing season in each plant part. The root was primarily dominated by stochastic community assembly processes, which is inconsistent with previous studies that suggest of a highly selective root environment. Leaf assembly processes were primarily stochastic as well. In contrast, the rhizosphere was a highly selective environment. The dominant rhizosphere selection process leads to more similar communities. Assembly processes in all plant compartments were dependent on plant growth stage with little line effect on community assembly. The foundations of assembly in the leaf were due to the harsh environment, leading to dominance of stochastic effects, whereas the stochastic effects in the root interior likely arise due to competitive exclusion or priority effects. Engineering canola microbiomes should occur during periods of strong selection assuming strong selection could promote beneficial bacteria. For example, engineering the microbiome to resist pathogens, which are typically aerially born, should focus on the flowering period, whereas microbiomes to enhance yield should likely be engineered postflowering as the rhizosphere is undergoing strong selection. IMPORTANCE In order to harness the microbiome for more sustainable crop production, we must first have a better understanding of microbial community assembly processes that occurring during plant development. This study examines the bacterial community assembly processes of the leaf, root, and rhizosphere of eight different lines of Brassica napus over the growing season. The influence of growth stage and B. napus line were examined in conjunction with the assembly processes. Understanding what influences the assembly processes of crops might allow for more targeted breeding efforts by working with the plant to manipulate the microbiome when it is undergoing the strongest selection pressure.


Asunto(s)
Brassica napus , Brassica napus/microbiología , Fitomejoramiento , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo
4.
Environ Sci Technol ; 55(14): 9864-9875, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34170682

RESUMEN

Effective bioremediation of hydrocarbons requires innovative approaches to minimize phosphate precipitation in soils of different buffering capacities. Understanding the mechanisms underlying sustained stimulation of bacterial activity remains a key challenge for optimizing bioremediation-particularly in northern regions. Positron emission tomography (PET) can trace microbial activity within the naturally occurring soil structure of intact soils. Here, we use PET to test two hypotheses: (1) optimizing phosphate bioavailability in soil will outperform a generic biostimulatory solution in promoting hydrocarbon remediation and (2) oligotrophic biostimulation will be more effective than eutrophic approaches. In so doing, we highlight the key bacterial taxa that underlie aerobic and anaerobic hydrocarbon degradation in subarctic soils. In particular, we showed that (i) optimized phosphate bioavailability outperformed generic biostimulatory solutions in promoting hydrocarbon degradation, (ii) oligotrophic biostimulation is more effective than eutrophic approaches, and (iii) optimized biostimulatory solutions stimulated specific soil regions and bacterial consortia. The knowledge gleaned from this study will be crucial in developing field-scale biodegradation treatments for sustained stimulation of bacterial activity in northern regions.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
5.
Mol Imaging ; 19: 1536012120966405, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33119419

RESUMEN

Positron-emitting nuclides have long been used as imaging agents in medical science to spatially trace processes non-invasively, allowing for real-time molecular imaging using low tracer concentrations. This ability to non-destructively visualize processes in real time also makes positron imaging uniquely suitable for probing various processes in plants and porous environmental media, such as soils and sediments. Here, we provide an overview of historical and current applications of positron imaging in environmental research. We highlight plant physiological research, where positron imaging has been used extensively to image dynamics of macronutrients, signalling molecules, trace elements, and contaminant metals under various conditions and perturbations. We describe how positron imaging is used in porous soils and sediments to visualize transport, flow, and microbial metabolic processes. We also address the interface between positron imaging and other imaging approaches, and present accompanying chemical analysis of labelled compounds for reviewed topics, highlighting the bridge between positron imaging and complementary techniques across scales. Finally, we discuss possible future applications of positron imaging and its potential as a nexus of interdisciplinary biogeochemical research.


Asunto(s)
Electrones , Plantas , Trazadores Radiactivos , Suelo
6.
Data Brief ; 31: 106143, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32953951

RESUMEN

The plant microbiome has been recently recognized as a plant phenotype to help in the food security of the future population. However, global plant microbiome datasets are insufficient to be used effectively for breeding this new generation of crop plants. We surveyed the diversity and temporal composition of bacterial and fungal communities in the root and rhizosphere of Brassica napus, the world's second largest oilseed crop, weekly in eight diverse lines at one site and every three weeks in sixteen lines, at three sites in 2016 and 2017 in the Canadian Prairies. We sequenced the bacterial 16S ribosomal RNA gene generating a total of 127.7 million reads and the fungal internal transcribed spacer (ITS) region generating 113.4 million reads. 14,944 unique fungal amplicon sequence variants (ASV) were detected, with an average of 43 ASVs per root and 105 ASVs per rhizosphere sample. We detected 10,882 unique bacterial ASVs with an average of 249 ASVs per sample. Temporal, site-to-site, and line-driven variability were key determinants of microbial community structure. This dataset is a valuable resource to systematically extract information on the belowground microbiome of diverse B. napus lines in different environments, at different times in the growing season, in order to adapt effective varieties for sustainable crop production systems.

7.
Data Brief ; 30: 105467, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32346558

RESUMEN

The plant microbiome has been recently recognized as a plant phenotype to help in the food security of the future population. However, global plant microbiome datasets are insufficient to be used effectively for breeding this new generation of crop plants. We surveyed the diversity and temporal composition of fungal communities in the root and rhizosphere of Brassica napus, the world's second largest oilseed crop, weekly in eight diverse lines at one site and every three weeks in sixteen lines, at three sites in 2016 and 2017 in the Canadian Prairies. 14,944 unique amplicon sequence variants (ASV) were detected based on the internal transcribed spacer region, with an average of 43 ASVs per root and 105 ASVs per rhizosphere sample. Temporal, site-to-site, and line-driven variability were key determinants of fungal community structure. This dataset is a valuable resource to systematically extract information on the belowground microbiome of diverse B. napus lines in different environments, at different times in the growing season, in order to adapt effective varieties for sustainable crop production systems.

8.
J Environ Qual ; 48(3): 559-567, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31180417

RESUMEN

When soil is frozen, biochar promotes petroleum hydrocarbon (PHC) degradation, yet we still do not understand why. To investigate microbial biodegradation activity under frozen conditions, we placed 60-µm mesh bags containing 6% (v/v) biochar created from fishmeal, bonemeal, bone chip, or wood into PHC-contaminated soil, which was then frozen to -5°C. This created three soil niches: biochar particles, the charosphere (biochar-contiguous soil), and bulk soil outside of the bags. After 90 d, C-phenanthrene mineralization reached 55% in bonemeal biochar and 84% in bone chip biochar charosphere soil, compared with only 43% in bulk soil and 13% in bone chip biochar particles. Soil pH remained near neutral in bone chip and bonemeal biochar treatments, unlike wood biochar, which increased alkalinity and likely made phosphate unavailable for microorganisms. Generally, charosphere soil had higher aromatic degradative gene abundances than bulk soil, but gene abundance was not directly linked to C-phenanthrene mineralization. In bone chip biochar-amended soils, phosphate successfully predicted microbial community composition, and abundances of and increased in charosphere soil. Biochar effects on charosphere soil were dependent on feedstock material and suggest that optimizing the charosphere in bone-derived biochars may increase remediation success in northern regions.


Asunto(s)
Fenantrenos , Contaminantes del Suelo , Isótopos de Carbono , Carbón Orgánico , Groenlandia , Suelo
9.
ISME J ; 13(8): 1988-1996, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30926920

RESUMEN

The development of microbial networks is central to ecosystem functioning and is the hallmark of complex natural systems. Characterizing network development over time and across environmental gradients is hindered by the millions of potential interactions among community members, limiting interpretations of network evolution. We developed a feature selection approach using data winnowing that identifies the most ecologically influential microorganisms within a network undergoing change. Using a combination of graph theory, leave-one-out analysis, and statistical inference, complex microbial communities are winnowed to identify the core organisms responding to external gradients or functionality, and then network development is evaluated against these externalities. In a plant invasion case study, the winnowed microbial network became more influential as the plant invasion progressed as a result of direct plant-microbe links rather than the expected indirect plant-soil-microbe links. This represents the first use of structural equation modeling to predict microbial network evolution, which requires identification of keystone taxa and quantification of the ecological processes underpinning community structure and function patterns.


Asunto(s)
Bacterias/aislamiento & purificación , Plantas/microbiología , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Especies Introducidas , Análisis de Clases Latentes , Consorcios Microbianos , Filogenia , Suelo/química
10.
Sci Rep ; 8(1): 10894, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022032

RESUMEN

Treeline responses to climate change ultimately depend on successful seedling recruitment, which requires dispersal of viable seeds and establishment of individual propagules in novel environments. In this study, we evaluated the effects of several abiotic and biotic drivers of early tree seedling recruitment across an alpine treeline ecotone. In two consecutive years, we sowed seeds of low- and high-elevation provenances of Larix decidua (European larch) and Picea abies (Norway spruce) below, at, and above the current treeline into intact vegetation and into open microsites with artificially removed surface vegetation, as well as into plots protected from seed predators and herbivores. Seedling emergence and early establishment in treatment and in control plots were monitored over two years. Tree seedling emergence occurred at and several hundred metres above the current treeline when viable seeds and suitable microsites for germination were available. However, dense vegetation cover at lower elevations and winter mortality at higher elevations particularly limited early recruitment. Post-dispersal predation, species, and provenance also affected emergence and early establishment. This study demonstrates the importance of understanding multiple abiotic and biotic drivers of early seedling recruitment that should be incorporated into predictions of treeline dynamics under climate change.


Asunto(s)
Biota , Cambio Climático , Picea/fisiología , Pinus/fisiología , Plantones/fisiología , Estrés Fisiológico , Árboles/fisiología , Ecosistema , Germinación , Noruega , Estaciones del Año
11.
Environ Sci Technol ; 52(4): 1773-1786, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29378402

RESUMEN

Phosphorus availability and cycling in microbial communities is a key determinant of bacterial activity. However, identifying organisms critical to P cycling in complex biodegrading consortia has proven elusive. Here we assess a new DNA stable isotope probing (SIP) technique using heavy oxygen-labeled phosphate (P18O4) and its effectiveness in pure cultures and a nitrate-reducing benzene-degrading consortium. First, we successfully labeled pure cultures of Gram-positive Micrococcus luteus and Gram-negative Bradyrhizobium elkanii and separated isotopically light and heavy DNA in pure cultures using centrifugal analyses. Second, using high-throughput amplicon sequencing of 16S rRNA genes to characterize active bacterial taxa (13C-labeled), we found taxa like Betaproteobacteria were key in denitrifying benzene degradation and that other degrading (nonhydrocarbon) inactive taxa (P18O4-labeled) like Staphylococcus and Corynebacterium may promote degradation through production of secondary metabolites (i.e., "helper" or "rock miner" bacteria). Overall, we successfully separated active and inactive taxa in contaminated soils, demonstrating the utility of P18O4-DNA SIP for identifying actively growing bacterial taxa. We also identified potential "miner" bacteria that choreograph hydrocarbon degradation by other microbes (i.e., the "hunters") without directly degrading contaminants themselves. Thus, while several taxa degrade benzene under denitrifying conditions, microbial benzene degradation may be enhanced by both direct degraders and miner bacteria.


Asunto(s)
Benceno , Fosfatos , Biodegradación Ambiental , Oxígeno , Filogenia , ARN Ribosómico 16S
12.
Ecology ; 98(8): 2158-2169, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28547813

RESUMEN

Moisture is critical for plant success in polar deserts but not by the obvious pathway of reduced water stress. We hypothesized that an indirect, nutrient-linked, pathway resulting from unique water/frozen soil interactions in polar deserts creates nutrient-rich patches critical for plant growth. These nutrient-rich patches (diapirs) form deep in High Arctic polar deserts soils from water accumulating at the permafrost freezing front and ultimately rising into the upper soil horizons through cryoturbated convective landforms (frost boils). To determine if diapirs provide an enhanced source of plant-available N for Salix arctica (Arctic willow), we characterized soil, root, stem, and leaf 15 N natural abundance across 24 diapir and non-diapir frost boils in a High Arctic granitic semi-desert. When diapir horizons were available, S. arctica increased its subsurface (i.e., diapir) N uptake and plant root biomass doubled within diapir. Plant uptake of enriched 15 N injected into organic rich soil patches was 2.5-fold greater in diapir than in non-diapir frost boils. S. arctica percent cover was often higher (7.3 ± 1.0 [mean ± SE]) on diapiric frost boils, compared to frost boils without diapirs (4.4 ± 0.7), potentially reflecting the additional 20% nitrogen available in the subsurface of diapiric frost boils. Selective N acquisition from diapirs is a mechanism by which soil moisture indirectly enhances plant growth. Our work suggests that diapirs may be one mechanism contributing to Arctic greening by shrub expansion.


Asunto(s)
Salix/fisiología , Regiones Árticas , Biomasa , Nitrógeno/metabolismo , Suelo/química
13.
ISME J ; 11(5): 1261-1275, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28140393

RESUMEN

Although invasive plants can drive ecosystem change, little is known about the directional nature of belowground interactions between invasive plants, native roots, bacteria, archaea and fungi. We used detailed bioinformatics and a recently developed root assay on soils collected in fescue grassland along a gradient of smooth brome (Bromus inermis Leyss) invasion to examine the links between smooth brome shoot litter and root, archaea, bacteria and fungal communities. We examined (1) aboveground versus belowground influences of smooth brome on soil microbial communities, (2) the importance of direct versus microbe-mediated impacts of plants on soil fungal communities, and (3) the web of roots, shoots, archaea, bacteria and fungi interactions across the A and B soil horizons in invaded and non-invaded sites. Archaea and bacteria influenced fungal composition, but not vice versa, as indicated by redundancy analyses. Co-inertia analyses suggested that bacterial-fungal variance was driven primarily by 12 bacterial operational taxonomic units (OTUs). Brome increased bacterial diversity via smooth brome litter in the A horizon and roots in the B horizon, which then reduced fungal diversity. Archaea increased abundance of several bacterial OTUs, and the key bacterial OTUs mediated changes in the fungi's response to invasion. Overall, native root diversity loss and bacterial mediation were more important drivers of fungal composition than were the direct effects of increases in smooth brome. Critically, native plant species displacement and root loss appeared to be the most important driver of fungal composition during invasion. This causal web likely gives rise to the plant-fungi feedbacks, which are an essential factor determining plant diversity in invaded grassland ecosystems.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Raíces de Plantas/microbiología , Microbiología del Suelo , Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Bromus/microbiología , Hongos/clasificación , Especies Introducidas , Interacciones Microbianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...