Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 11(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440474

RESUMEN

Identifying prognostic biomarkers and risk stratification for COVID-19 patients is a challenging necessity. One of the core survival factors is patient age. However, chronological age is often severely biased due to dormant conditions and existing comorbidities. In this retrospective cohort study, we analyzed the data from 5315 COVID-19 patients (1689 lethal cases) admitted to 11 public hospitals in New York City from 1 March 2020 to 1 December. We calculated patients' pace of aging with BloodAge-a deep learning aging clock trained on clinical blood tests. We further constructed survival models to explore the prognostic value of biological age compared to that of chronological age. A COVID-19 score was developed to support a practical patient stratification in a clinical setting. Lethal COVID-19 cases had higher predicted age, compared to non-lethal cases (Δ = 0.8-1.6 years). Increased pace of aging was a significant risk factor of COVID-related mortality (hazard ratio = 1.026 per year, 95% CI = 1.001-1.052). According to our logistic regression model, the pace of aging had a greater impact (adjusted odds ratio = 1.09 ± 0.00, per year) than chronological age (1.04 ± 0.00, per year) on the lethal infection outcome. Our results show that a biological age measure, derived from routine clinical blood tests, adds predictive power to COVID-19 survival models.

2.
Aging Dis ; 12(5): 1252-1262, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34341706

RESUMEN

DNA methylation aging clocks have become an invaluable tool in biogerontology research since their inception in 2013. Today, a variety of machine learning approaches have been tested for the purpose of predicting human age based on molecular-level features. Among these, deep learning, or neural networks, is an especially promising approach that has been used to construct accurate clocks using blood biochemistry, transcriptomics, and microbiomics data-feats unachieved by other algorithms. In this article, we explore how deep learning performs in a DNA methylation setting and compare it to the current industry standard-the 353 CpG clock published in 2013. The aging clock we are presenting (DeepMAge) is a neural network regressor trained on 4,930 blood DNA methylation profiles from 17 studies. Its absolute median error was 2.77 years in an independent verification set of 1,293 samples from 15 studies. DeepMAge shows biological relevance by assigning a higher predicted age to people with various health-related conditions, such as ovarian cancer, irritable bowel diseases, and multiple sclerosis.

3.
Cell Rep Med ; 2(3): 100216, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33763655

RESUMEN

Cardiotoxicity, defined as toxicity that affects the heart, is one of the most common adverse drug effects. Numerous drugs have been shown to have the potential to induce lethal arrhythmias by affecting cardiac electrophysiology, which is the focus of current preclinical testing. However, a substantial number of drugs can also affect cardiac function beyond electrophysiology. Within this broader sense of cardiotoxicity, this review discusses the key drug-protein interactions known to be involved in cardiotoxic drug response. We cover adverse effects of anticancer, central nervous system, genitourinary system, gastrointestinal, antihistaminic, anti-inflammatory, and anti-infective agents, illustrating that many share mechanisms of cardiotoxicity, including contractility, mitochondrial function, and cellular signaling.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Cardiotoxicidad/etiología , Fármacos Cardiovasculares/efectos adversos , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Retirada de Medicamento por Seguridad/estadística & datos numéricos , Antiinfecciosos/efectos adversos , Antiinflamatorios/efectos adversos , Antineoplásicos/efectos adversos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Arritmias Cardíacas/prevención & control , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Cardiotoxicidad/prevención & control , Desarrollo de Medicamentos , Fármacos Gastrointestinales/efectos adversos , Agentes Genitourinarios/efectos adversos , Antagonistas de los Receptores Histamínicos/efectos adversos , Humanos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fármacos Neuroprotectores/efectos adversos , Transducción de Señal
4.
Front Aging ; 2: 697254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822029

RESUMEN

DeepMAge is a deep-learning DNA methylation aging clock that measures the organismal pace of aging with the information from human epigenetic profiles. In blood samples, DeepMAge can predict chronological age within a 2.8 years error margin, but in saliva samples, its performance is drastically reduced since aging clocks are restricted by the training set domain. However, saliva is an attractive fluid for genomic studies due to its availability, compared to other tissues, including blood. In this article, we display how cell type deconvolution and elastic net can be used to expand the domain of deep aging clocks to other tissues. Using our approach, DeepMAge's error in saliva samples was reduced from 20.9 to 4.7 years with no retraining.

5.
Aging (Albany NY) ; 12(24): 24484-24503, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33378272

RESUMEN

Aging is emerging as a druggable target with growing interest from academia, industry and investors. New technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence from the industry sector may lead to novel discoveries to treat age-related diseases. The present review summarizes presentations from the 7th Annual Aging Research and Drug Discovery (ARDD) meeting, held online on the 1st to 4th of September 2020. The meeting covered topics related to new methodologies to study aging, knowledge about basic mechanisms of longevity, latest interventional strategies to target the aging process as well as discussions about the impact of aging research on society and economy. More than 2000 participants and 65 speakers joined the meeting and we already look forward to an even larger meeting next year. Please mark your calendars for the 8th ARDD meeting that is scheduled for the 31st of August to 3rd of September, 2021, at Columbia University, USA.


Asunto(s)
Envejecimiento , Inteligencia Artificial , Investigación Biomédica , Longevidad , Senescencia Celular , Congresos como Asunto , Descubrimiento de Drogas , Humanos , Estilo de Vida , Preparaciones Farmacéuticas
6.
Front Pharmacol ; 11: 639, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508633

RESUMEN

Computational methods can increase productivity of drug discovery pipelines, through overcoming challenges such as cardiotoxicity identification. We demonstrate prediction and preservation of cardiotoxic relationships for six drug-induced cardiotoxicity types using a machine learning approach on a large collected and curated dataset of transcriptional and molecular profiles (1,131 drugs, 35% with known cardiotoxicities, and 9,933 samples). The algorithm generality is demonstrated through validation in an independent drug dataset, in addition to cross-validation. The best prediction attains an average accuracy of 79% in area under the curve (AUC) for safe versus risky drugs, across all six cardiotoxicity types on validation and 66% on the unseen set of drugs. Individual cardiotoxicities for specific drug types are also predicted with high accuracy, including cardiac disorder signs and symptoms for a previously unseen set of anti-inflammatory agents (AUC = 80%) and heart failures for an unseen set of anti-neoplastic agents (AUC = 76%). Besides, independent testing on transcriptional data from the Drug Toxicity Signature Generation Center (DToxS) produces similar results in terms of accuracy and shows an average AUC of 72% for previously seen drugs and 60% for unseen respectively. Given the ubiquitous manifestation of multiple drug adverse effects in every human organ, the methodology is expected to be applicable to additional tissue-specific side effects beyond cardiotoxicity.

7.
iScience ; 23(6): 101199, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32534441

RESUMEN

The human gut microbiome is a complex ecosystem that both affects and is affected by its host status. Previous metagenomic analyses of gut microflora revealed associations between specific microbes and host age. Nonetheless there was no reliable way to tell a host's age based on the gut community composition. Here we developed a method of predicting hosts' age based on microflora taxonomic profiles using a cross-study dataset and deep learning. Our best model has an architecture of a deep neural network that achieves the mean absolute error of 5.91 years when tested on external data. We further advance a procedure for inferring the role of particular microbes during human aging and defining them as potential aging biomarkers. The described intestinal clock represents a unique quantitative model of gut microflora aging and provides a starting point for building host aging and gut community succession into a single narrative.

8.
Ageing Res Rev ; 60: 101050, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272169

RESUMEN

The aging process results in multiple traceable footprints, which can be quantified and used to estimate an organism's age. Examples of such aging biomarkers include epigenetic changes, telomere attrition, and alterations in gene expression and metabolite concentrations. More than a dozen aging clocks use molecular features to predict an organism's age, each of them utilizing different data types and training procedures. Here, we offer a detailed comparison of existing mouse and human aging clocks, discuss their technological limitations and the underlying machine learning algorithms. We also discuss promising future directions of research in biohorology - the science of measuring the passage of time in living systems. Overall, we expect deep learning, deep neural networks and generative approaches to be the next power tools in this timely and actively developing field.


Asunto(s)
Envejecimiento , Biomarcadores , Aprendizaje Automático , Redes Neurales de la Computación , Envejecimiento/genética , Algoritmos , Animales , Biomarcadores/análisis , Humanos , Ratones
9.
Aging (Albany NY) ; 11(22): 10771-10780, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767810

RESUMEN

Multiple recent advances in machine learning enabled computer systems to exceed human performance in many tasks including voice, text, and speech recognition and complex strategy games. Aging is a complex multifactorial process driven by and resulting in the many minute changes transpiring at every level of the human organism. Deep learning systems trained on the many measurable features changing in time can generalize and learn the many biological processes on the population and individual levels. The deep age predictors can help advance aging research by establishing causal relationships in non-linear systems. Deep aging clocks can be used for identification of novel therapeutic targets, evaluating the efficacy of the various interventions, data quality control, data economics, prediction of health trajectories, mortality, and many other applications. Here we present the current state of development of the deep aging clocks in the context of the pharmaceutical research and development and clinical applications.


Asunto(s)
Envejecimiento , Aprendizaje Profundo , Longevidad , Animales , Humanos
10.
Trends Pharmacol Sci ; 40(8): 546-549, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31279569

RESUMEN

First published in 2016, predictors of chronological and biological age developed using deep learning (DL) are rapidly gaining popularity in the aging research community. These deep aging clocks can be used in a broad range of applications in the pharmaceutical industry, spanning target identification, drug discovery, data economics, and synthetic patient data generation. We provide here a brief overview of recent advances in this important subset, or perhaps superset, of aging clocks that have been developed using artificial intelligence (AI).


Asunto(s)
Envejecimiento/fisiología , Aprendizaje Profundo , Longevidad/fisiología , Animales , Biomarcadores/análisis , Industria Farmacéutica/métodos , Humanos
11.
Sci Rep ; 9(1): 142, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644411

RESUMEN

There is an association between smoking and cancer, cardiovascular disease and all-cause mortality. However, currently, there are no affordable and informative tests for assessing the effects of smoking on the rate of biological aging. In this study we demonstrate for the first time that smoking status can be predicted using blood biochemistry and cell count results andthe recent advances in artificial intelligence (AI). By employing age-prediction models developed using supervised deep learning techniques, we found that smokers exhibited higher aging rates than nonsmokers, regardless of their cholesterol ratios and fasting glucose levels. We further used those models to quantify the acceleration of biological aging due to tobacco use. Female smokers were predicted to be twice as old as their chronological age compared to nonsmokers, whereas male smokers were predicted to be one and a half times as old as their chronological age compared to nonsmokers. Our findings suggest that deep learning analysis of routine blood tests could complement or even replace the current error-prone method of self-reporting of smoking status and could be expanded to assess the effect of other lifestyle and environmental factors on aging.


Asunto(s)
Envejecimiento Prematuro/diagnóstico , Análisis Químico de la Sangre/métodos , Fumadores , Fumar/patología , Aprendizaje Automático Supervisado , Factores de Edad , Envejecimiento Prematuro/etiología , Inteligencia Artificial , Recuento de Células Sanguíneas , Análisis Químico de la Sangre/instrumentación , Aprendizaje Profundo , Humanos , Persona de Mediana Edad , Factores de Riesgo , Factores Sexuales , Fumar/efectos adversos , Fumar/fisiopatología
12.
Ageing Res Rev ; 49: 49-66, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472217

RESUMEN

The applications of modern artificial intelligence (AI) algorithms within the field of aging research offer tremendous opportunities. Aging is an almost universal unifying feature possessed by all living organisms, tissues, and cells. Modern deep learning techniques used to develop age predictors offer new possibilities for formerly incompatible dynamic and static data types. AI biomarkers of aging enable a holistic view of biological processes and allow for novel methods for building causal models-extracting the most important features and identifying biological targets and mechanisms. Recent developments in generative adversarial networks (GANs) and reinforcement learning (RL) permit the generation of diverse synthetic molecular and patient data, identification of novel biological targets, and generation of novel molecular compounds with desired properties and geroprotectors. These novel techniques can be combined into a unified, seamless end-to-end biomarker development, target identification, drug discovery and real world evidence pipeline that may help accelerate and improve pharmaceutical research and development practices. Modern AI is therefore expected to contribute to the credibility and prominence of longevity biotechnology in the healthcare and pharmaceutical industry, and to the convergence of countless areas of research.


Asunto(s)
Inteligencia Artificial , Biomarcadores , Investigación Biomédica/tendencias , Longevidad , Algoritmos , Animales , Bases de Datos Factuales , Descubrimiento de Drogas , Humanos
13.
Aging (Albany NY) ; 10(11): 3079-3088, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425188

RESUMEN

Multiple interventions in the aging process have been discovered to extend the healthspan of model organisms. Both industry and academia are therefore exploring possible transformative molecules that target aging and age-associated diseases. In this overview, we summarize the presented talks and discussion points of the 5th Annual Aging and Drug Discovery Forum 2018 in Basel, Switzerland. Here academia and industry came together, to discuss the latest progress and issues in aging research. The meeting covered talks about the mechanistic cause of aging, how longevity signatures may be highly conserved, emerging biomarkers of aging, possible interventions in the aging process and the use of artificial intelligence for aging research and drug discovery. Importantly, a consensus is emerging both in industry and academia, that molecules able to intervene in the aging process may contain the potential to transform both societies and healthcare.

14.
Mol Pharm ; 15(10): 4398-4405, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30180591

RESUMEN

Modern computational approaches and machine learning techniques accelerate the invention of new drugs. Generative models can discover novel molecular structures within hours, while conventional drug discovery pipelines require months of work. In this article, we propose a new generative architecture, entangled conditional adversarial autoencoder, that generates molecular structures based on various properties, such as activity against a specific protein, solubility, or ease of synthesis. We apply the proposed model to generate a novel inhibitor of Janus kinase 3, implicated in rheumatoid arthritis, psoriasis, and vitiligo. The discovered molecule was tested in vitro and showed good activity and selectivity.


Asunto(s)
Descubrimiento de Drogas/métodos , Aprendizaje Automático , Animales , Humanos , Janus Quinasa 3/metabolismo , Redes Neurales de la Computación
15.
Front Genet ; 9: 242, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050560

RESUMEN

For the past several decades, research in understanding the molecular basis of human muscle aging has progressed significantly. However, the development of accessible tissue-specific biomarkers of human muscle aging that may be measured to evaluate the effectiveness of therapeutic interventions is still a major challenge. Here we present a method for tracking age-related changes of human skeletal muscle. We analyzed publicly available gene expression profiles of young and old tissue from healthy donors. Differential gene expression and pathway analysis were performed to compare signatures of young and old muscle tissue and to preprocess the resulting data for a set of machine learning algorithms. Our study confirms the established mechanisms of human skeletal muscle aging, including dysregulation of cytosolic Ca2+ homeostasis, PPAR signaling and neurotransmitter recycling along with IGFR and PI3K-Akt-mTOR signaling. Applying several supervised machine learning techniques, including neural networks, we built a panel of tissue-specific biomarkers of aging. Our predictive model achieved 0.91 Pearson correlation with respect to the actual age values of the muscle tissue samples, and a mean absolute error of 6.19 years on the test set. The performance of models was also evaluated on gene expression samples of the skeletal muscles from the Gene expression Genotype-Tissue Expression (GTEx) project. The best model achieved the accuracy of 0.80 with respect to the actual age bin prediction on the external validation set. Furthermore, we demonstrated that aging biomarkers can be used to identify new molecular targets for tissue-specific anti-aging therapies.

16.
Oncotarget ; 9(18): 14692-14722, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581875

RESUMEN

While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.

17.
Oncotarget ; 9(8): 7796-7811, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29487692

RESUMEN

Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1, encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro-derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition.

18.
Oncotarget ; 9(5): 5665-5690, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29464026

RESUMEN

The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals.

19.
J Gerontol A Biol Sci Med Sci ; 73(11): 1482-1490, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-29340580

RESUMEN

Accurate and physiologically meaningful biomarkers for human aging are key to assessing antiaging therapies. Given ethnic differences in health, diet, lifestyle, behavior, environmental exposures, and even average rate of biological aging, it stands to reason that aging clocks trained on datasets obtained from specific ethnic populations are more likely to account for these potential confounding factors, resulting in an enhanced capacity to predict chronological age and quantify biological age. Here, we present a deep learning-based hematological aging clock modeled using the large combined dataset of Canadian, South Korean, and Eastern European population blood samples that show increased predictive accuracy in individual populations compared to population specific hematologic aging clocks. The performance of models was also evaluated on publicly available samples of the American population from the National Health and Nutrition Examination Survey (NHANES). In addition, we explored the association between age predicted by both population specific and combined hematological clocks and all-cause mortality. Overall, this study suggests (a) the population specificity of aging patterns and (b) hematologic clocks predicts all-cause mortality. The proposed models were added to the freely-available Aging.AI system expanding the range of tools for analysis of human aging.


Asunto(s)
Envejecimiento/sangre , Biomarcadores/sangre , Adulto , Anciano , Anciano de 80 o más Años , Glucemia , Canadá , Colesterol/sangre , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Eritrocitos , Europa Oriental , Femenino , Encuestas Epidemiológicas , Hemoglobinas , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Redes Neurales de la Computación , República de Corea , Albúmina Sérica , Factores Sexuales , Sodio/sangre , Triglicéridos/sangre , Urea/sangre , Adulto Joven
20.
Biol Open ; 6(6): 832-843, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28495963

RESUMEN

DNA topoisomerase I alpha (TOP1α) plays a specific role in Arabidopsis thaliana development and is required for stem cell regulation in shoot and floral meristems. Recently, a new role independent of meristem functioning has been described for TOP1α, namely flowering time regulation. The same feature had been detected by us earlier for fas5, a mutant allele of TOP1α In this study we clarify the effects of fas5 on bolting initiation and analyze the molecular basis of its role on flowering time regulation. We show that fas5 mutation leads to a constitutive shade avoidance syndrome, accompanied by leaf hyponasty, petiole elongation, lighter leaf color and early bolting. Other alleles of TOP1α demonstrate the same shade avoidance response. RNA sequencing confirmed the activation of shade avoidance gene pathways in fas5 mutant plants. It also revealed the repression of many genes controlling floral meristem identity and organ morphogenesis. Our research further expands the knowledge of TOP1α function in plant development and reveals that besides stem cell maintenance TOP1α plays an important new role in regulating the adaptive plant response to light stimulus and flower development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...