Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1043354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051083

RESUMEN

Ratoon rice (Oryza sativa L.) is the production of a second season rice that utilizes the dormant buds surviving on the stubble left behind after the harvest of the main crop. However, the sprouting mechanism of regenerated buds at separate nodes is rarely reported. Field experiments were conducted to examine the effects of leaf-cutting and spikelet thinning on the sprouting of regenerated buds at the separate node, the contributions of regenerated panicles at the separate node to the total grain yield in the ratoon crop, and the associated mechanism. The results showed that the contribution of separate node yields to the total grain yield in the ratoon crop was D2 (panicles regenerated from the 2nd node from the top) >D3 (panicles regenerated from the 3rd node from the top) >D4 (panicles regenerated from the lower nodes below the 3rd node), and the contribution of D2 and D3 made up approximately 80% of the total yield in the ratoon crop. In addition, the effect of leaf-cutting treatment and spikelet-thinning treatment on the grain yield of ratoon season was mainly realized by regulating the relative contribution rate of D2 and D4 grain yield to the total yield of ratoon season. Further analysis indicated that the sprouting of regenerated buds at the D2 node was mainly affected by the content of CTK, while D3 was mainly regulated by GAs and CTK, and D4 was mainly regulated by ABA and CTK. However, only the CTK content in stems and buds was positively correlated with single bud length and bud number at each nodes. These results indicated that CTK might be the main signal regulating the sprouting of regenerated buds and the grain yield at separate nodes, which might change the transport of assimilates to stems and buds.

2.
Nat Commun ; 14(1): 765, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765112

RESUMEN

Extreme weather events threaten food security, yet global assessments of impacts caused by crop waterlogging are rare. Here we first develop a paradigm that distils common stress patterns across environments, genotypes and climate horizons. Second, we embed improved process-based understanding into a farming systems model to discern changes in global crop waterlogging under future climates. Third, we develop avenues for adapting cropping systems to waterlogging contextualised by environment. We find that yield penalties caused by waterlogging increase from 3-11% historically to 10-20% by 2080, with penalties reflecting a trade-off between the duration of waterlogging and the timing of waterlogging relative to crop stage. We document greater potential for waterlogging-tolerant genotypes in environments with longer temperate growing seasons (e.g., UK, France, Russia, China), compared with environments with higher annualised ratios of evapotranspiration to precipitation (e.g., Australia). Under future climates, altering sowing time and adoption of waterlogging-tolerant genotypes reduces yield penalties by 18%, while earlier sowing of winter genotypes alleviates waterlogging by 8%. We highlight the serendipitous outcome wherein waterlogging stress patterns under present conditions are likely to be similar to those in the future, suggesting that adaptations for future climates could be designed using stress patterns realised today.


Asunto(s)
Aclimatación , Agua , Estaciones del Año , Adaptación Fisiológica , Agricultura
3.
Environ Pollut ; 307: 119460, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35568292

RESUMEN

Ustiloxin A (UA) and ustiloxin B (UB), two major mycotoxins produced by the pathogen of rice false smut (RFS) during rice cultivation, have attracted increasing attentions due to their potential health risks. However, limited data are available about their occurrence and fate in paddy fields and contamination profiles in rice. In this study, a field study was performed to investigate the occurrence and translocation of UA and UB in RFS-occurred paddies. For the first time to our knowledge, we reported a ubiquitous occurrence of the two ustiloxins in the paddy water (range: 0.01-3.46 µg/L for UA and <0.02-1.15 µg/L for UB) and brown rice (range: 0.09-154.08 µg/kg for UA and <0.09-23.57 µg/kg for UB). A significant positive correlation was observed between ustiloxin levels in paddy water and brown rice (rs = 0.48-0.79, p < 0.01). The occurrence of ustiloxin uptake in water-rice system was also evidenced by the rice exposure experiment, suggesting paddy water might be an important source for ustiloxin accumulation in rice. These results suggested that the contamination of ustiloxins in rice might occur widely, which was supported by the significantly high detection frequencies of UA (96.6%) and UB (62.4%) in polished rice (149 samples) from Hubei Province, China. The total concentrations of ustiloxins in the polished rice samples collected from Hubei Province ranged from <20.7 ng/kg (LOD) to 55.1 µg/kg (dry weight). Further studies are needed to evaluate the potential risks of ustiloxin exposure in the environment and humans.


Asunto(s)
Micotoxinas , Oryza , China , Humanos , Agua
4.
Environ Pollut ; 301: 118992, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35157931

RESUMEN

Ustiloxins, a group of bioactive metabolites produced by the pathogen of rice false smut (RFS), have emerged as ubiquitous contaminants in RFS-occurred paddy fields and could accumulate in rice. Nevertheless, the prevalence of ustiloxins in rice and exposure risks of humans are limited. In this study, concentrations of ustiloxin A (UA) and ustiloxins B (UB), which are two predominant ustiloxins, were measured in 240 rice samples from China and 72 rice samples from 12 other counties. The detection rates (DRs) of UA and UB were 82.1% and 49.3%, respectively, and their concentrations in rice ranged from below detection limit (LOD: 0.22 µg/kg) to 85.96 µg/kg dw. Furthermore, for the first time, we reported the occurrence of UA (DR = 22.8%) in urine collected from residues of Enshi city, China. Urinary UA were significantly correlated with the activities of alanine aminotransferase in male, and this male-biased hepatotoxicity was further confirmed in mice exposure experiment. This study for the first time reported the widespread geographical distribution of ustiloxins in rice, as well as emphasized the occurrence of internal exposure and potential health risk in humans.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Oryza , Animales , China/epidemiología , Masculino , Ratones , Oryza/química
5.
Sci Total Environ ; 808: 152170, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34875326

RESUMEN

Climate change (CC) in central China will change seasonal patterns of agricultural production through increasingly frequent extreme climatic events (ECEs). Breeding climate-resilient wheat (Triticum aestivum L.) genotypes may mitigate adverse effects of ECEs on crop productivity. To reveal crop traits conducive to long-term yield improvement in the target population of environments, we created 8,192 virtual genotypes with contrasting but realistic ranges of phenology, productivity and waterlogging tolerance. Using these virtual genotypes, we conducted a genotype (G) by environment (E) by management (M) factorial analysis (G×E×M) using locations distributed across the entire cereal cropping zone in mid-China. The G×E×M invoked locally-specific sowing dates under future climates that were premised on shared socioeconomic pathways SSP5-8.5, with a time horizon centred on 2080. Across the simulated adaptation landscape, productivity was primarily driven by yield components and phenology (average grain yield increase of 6-69% across sites with optimal combinations of these traits). When incident solar radiation was not limiting carbon assimilation, ideotypes with higher grain yields were characterised by earlier flowering, higher radiation-use efficiency and larger maximum kernel size. At sites with limited solar radiation, crops required longer growing periods to realise genetic yield potential, although higher radiation-use efficiency and larger maximum kernel size were again prospective traits enabling higher rates of yield gains. By 2080, extreme waterlogging stress in some regions of mid-China will impact substantially on productivity, with yield penalties of up to 1,010 kg ha-1. Ideotypes with optimal G×M could mitigate yield penalty caused by waterlogging by up to 15% under future climates. These results help distil promising crop trait by best management practice combinations that enable higher yields and robust adaptation to future climates and more frequent extreme climatic events, including flash flooding and soil waterlogging.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Cambio Climático , Grano Comestible , Estudios Prospectivos , Triticum
6.
Plants (Basel) ; 12(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36616195

RESUMEN

Stomata control carbon and water exchange between the leaves and the ambient. However, the plasticity responses of stomatal traits to growth conditions are still unclear, especially for monocot leaves. The current study investigated the leaf anatomical traits, stomatal morphological traits on both adaxial and abaxial leaf surfaces, and photosynthetic traits of Oryza leaves developed in two different growth conditions. Substantial variation exists across the Oryza species in leaf anatomy, stomatal traits, photosynthetic rate, and stomatal conductance. The abaxial stomatal density was higher than the adaxial stomatal density in all the species, and the stomatal ratios ranged from 0.35 to 0.46 across species in two growth environments. However, no difference in the stomatal ratio was observed between plants in the growth chamber and outdoors for a given species. Photosynthetic capacity, stomatal conductance, leaf width, major vein thickness, minor vein thickness, inter-vein distance, and stomatal pore width values for leaves grown outdoors were higher than those for plants grown in the growth chamber. Our results indicate that a broad set of leaf anatomical, stomatal, and photosynthetic traits of Oryza tend to shift together during plasticity to diverse growing conditions, but the previously projected sensitive trait, stomatal ratio, does not shape growth conditions.

7.
J Sci Food Agric ; 100(8): 3560-3569, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32198766

RESUMEN

BACKGROUND: Increasing rice yield and its stability are important to achieving the sustainability of rice production. Rice yields have increased substantially in China during recent decades, but information on the trend in yield stability has been limited. In this study, the trends in rice yield and rice yield stability from 1949 to 2015 were analysed in China's rice production. RESULTS: The results showed that rice yields for all 16 provinces presented an increasing trend during the study period. The national annual rice yield gain was 86.0 kg ha-1 during the last six decades, varying from 48.4 to 106.0 kg ha-1 in different provinces and exhibiting linear, bilinear, or trilinear relationships. Remarkably, the annual yield increase was smaller in provinces dominated by double rice cropping systems than in the other provinces. Notably, rice yield stagnations have occurred in recent years at provincial and national levels. Absolute residuals over time showed slight increases in four of 16 provinces, indicating a reduction in yield stability in these four provinces. However, the relative yield residuals exhibited a clear trend towards increased yield stability for all 16 provinces. The rice yields of newer cultivars planted with improved crop management practices were consistently higher and more stable than with cultivars from the beginning of the study period. CONCLUSION: This study revealed that rice yield in China has increased substantially, accompanied by improved stability over the last six decades. Given the spatial difference, this study emphasizes the priority of orienting long-term on-farm studies to investigate yield stability. © 2020 Society of Chemical Industry.


Asunto(s)
Producción de Cultivos/historia , Oryza/crecimiento & desarrollo , Biomasa , China , Historia del Siglo XX , Historia del Siglo XXI , Oryza/química
8.
PeerJ ; 8: e8193, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31942252

RESUMEN

BACKGROUND: The middle and lower reaches of the Yangtze River plain produce the second highest amount of wheat in China; however, waterlogging is an important environmental factor that substantially affects the yield production of wheat (Triticum aestivum L.) in this region. METHODS: In this study, seven treatments were implemented, including no waterlogging and exogenous 6-benzylaminopurine (6-BA) as a control (CK); waterlogging at booting (BW), anthesis (AW) and 15 days after anthesis (DAA, FW); and spraying 6-BA before waterlogging at booting (BW-6BA), anthesis (AW-6BA) and 15 DAA (FW-6BA), to determine the ability of 6-BA to alleviate the harmful impact of waterlogging on aboveground biomass production and grain yield. The widely cultivated wheat cultivar "Zhengmai 9023" was used. RESULTS: The results showed that more than 190.0 mm of rainfall, which accounted for approximately 45.0% of the precipitation over the whole wheat growing season, was distributed after the booting stage (April and May). In all waterlogged treatments, the photosynthetic rate, aboveground biomass and grain yield decreased, but the differences between the CK and the FW treatment were not significant. The grain yield decreased by 18.38%, 41.79% and 5.67% in the BW, AW and FW treatments, respectively. Spraying 6-BA before waterlogging enhanced the root activities after anthesis and then decreased the malondialdehyde concentrations of the flag leaves and the third leaf, increased the photosynthetic rate of the flag leaves and enhanced aboveground biomass and grain yield. Among the increments between the treatments, the increments between the BW and BW-6BA treatments were the largest, but between the FW and FW-6BA were smallest. In comparison to the other waterlogging treatments, the grain yields from the FW and FW-6BA treatments were significantly higher because of the higher kernel numbers per spike. The results indicated that waterlogging after the booting stage restrained the dry matter production of winter wheat, but spraying 6-BA before waterlogging slowed the plant senescence rate and reduced grain yield loss.

9.
Sci Rep ; 7(1): 7767, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798391

RESUMEN

Water shortage threatens agricultural sustainability in China, effective water-saving technologies urgently need to be developed. In this study, five treatments were conducted: rainfed (W0), a local supplemental irrigation (SI) practice (W1), and three treatments in which soil water content was tested prior to SI, specifically at 0-20 (W2), 0-40 (W3) and 0-60 cm (W4) soil layers. Soil water consumption in W3 had no differ with W2 but was higher than W1 and W4. Crop evapotranspiration in W1, W3 and W4 treatments were higher than that in W2. W3 treatment had higher leaf area index than W1 and W4 at later grain filling stages. The mean photosynthetically active radiation capture ratio in W3, especially at 20, 40 and 60 cm plant heights, were significantly higher than those in W1, W2 and W4. The chlorophyll content index, actual photosynthetic activities, catalase and superoxide dismutase activities of flag leaves from W3 were the highest after the middle grain filling stages. W3 treatment obtained the highest grain yield (9169 kg ha-1) and water use efficiency (20.8 kg ha-1 mm-1) in the two seasons. These benefits likely accrued through created a suitable soil moisture environment in W3 treatment.


Asunto(s)
Riego Agrícola/métodos , Producción de Cultivos/métodos , Fotosíntesis , Triticum/metabolismo , Clorofila/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Estaciones del Año , Triticum/crecimiento & desarrollo
10.
Ying Yong Sheng Tai Xue Bao ; 26(8): 2353-61, 2015 Aug.
Artículo en Chino | MEDLINE | ID: mdl-26685598

RESUMEN

Field experiments were conducted during 2012-2014 winter wheat growing seasons. Six irrigation treatments were designed: rainfed, W0; a local irrigation practice that irrigated at jointing and anthesis with 60 mm each time, W1; four irrigation treatments were designed with target relative soil moisture of 65% field capacity (FC) at jointing and 70% FC at anthesis in 0-20 (W2) 0-40 (W3), 0-60 (W4) , and 0-140 cm (W5) soil layers, respectively, to study the effects of supplemental irrigation by measuring moisture content in different soil layers on water consumption characteristics and photosynthesis and grain yield of winter wheat. The irrigation amounts at jointing in W1 and W4 were the highest, followed by W3 treatment, W2 and W5 were the lowest. The irrigation amounts at anthesis and total irrigation amounts were ranked as W5 > Wl, W4 > W3 > W2, the total water consumption in W3 was higher than that in W2, but had no difference with that in W1, W4 and W5 treatments, W3 had the higher soil water consumption than W1, W4 and W5 treatments, and the soil water consumption in 40-140 cm soil layers from jointing to anthesis and in 60-140 cm soil layers from anthesis to maturity in W3 were significantly higher than the other treatments. The photosynthetic rate, transpiration rate and water use efficiency of flag leaf at middle stage of grain filling from the W3 treatment were the highest, followed by the W1 and W4 treatments, and W0 treatment was the lowest. In the two growing seasons, the grain yield and water use efficiency in the W3 were 9077-9260 kg · hm(-2) and 20.7-20.9 kg · hm(-2) · mm(-1), respectively, which were higher than those from the other treatments, and the irrigation water productivity in the W3 was the highest. As far as high-yield and high-water use efficiency were concerned in this experiment, the most appropriate soil layer for measuring moisture content was 0-40 cm.


Asunto(s)
Riego Agrícola , Fotosíntesis , Suelo/química , Triticum/fisiología , Transporte Biológico , Biomasa , Hojas de la Planta/fisiología , Estaciones del Año , Semillas , Agua/fisiología
11.
PLoS One ; 10(9): e0137274, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26335019

RESUMEN

Winter wheat is threatened by drought in the Huang-Huai-Hai Plain of China, thus, effective water-saving irrigation practices are urgently required to maintain its high winter wheat production. This study was conducted from 2012 to 2014 to determine how supplemental irrigation (SI) affected soil moisture, photosynthesis, and dry matter (DM) production of winter wheat by measuring the moisture in 0-20 cm (W2), 0-40 cm (W3), and 0-60 cm (W4) soil profiles. Rainfed (W0) and local SI practice (W1, irrigation with 60 mm each at jointing and anthesis) treatments were designed as controls. The irrigation amount for W3 was significantly lower than that for W1 and W4 but higher than that for W2. The soil relative water content (SRWC) in 0-40 cm soil profiles at jointing after SI for W3 was significantly lower than that for W1 and W4 but higher than that for W2. W3 exhibited lower SRWC in 100-140 and 60-140 cm soil profiles at anthesis after SI and at maturity, respectively, but higher root length density in 60-100 cm soil profiles than W1, W2 and W4. Compared with W1, W2 and W4, photosynthetic and transpiration rates and stomatal conductance of flag leaves for W3 were significantly greater during grain filling, particularly at the mid and later stages. The total DM at maturity, DM in grain and leaves, post-anthesis DM accumulation and its contribution to grain and grain filling duration were higher for W3. The 1000-grain weight, grain yield and water use efficiency for W3 were the highest. Therefore, treatment of increasing SRWC in the 0-40 cm soil profiles to 65% and 70% field capacities at jointing and anthesis (W3), respectively, created a suitable soil moisture environment for winter wheat production, which could be considered as a high yield and water-saving treatment in Huang-Huai-Hai Plain, China.


Asunto(s)
Triticum/metabolismo , Riego Agrícola , China , Clima , Sequías , Humedad , Fotosíntesis , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Suelo , Agua
12.
Ying Yong Sheng Tai Xue Bao ; 24(8): 2186-96, 2013 Aug.
Artículo en Chino | MEDLINE | ID: mdl-24380337

RESUMEN

Taking the high-yielding winter wheat variety Jimai 22 as test material, a field experiment was conducted in 2010-2012 to study the effects of irrigation with different length micro-sprinkling hoses on the soil water distribution in winter wheat growth period and the water consumption characteristics and grain yield of winter wheat. Three micro-sprinkling hose lengths were designed, i. e., 40 m (T40), 60 m (T60) and 80 m (T80). Under the micro-sprinkling irrigation at jointing and anthesis stages, the uniformity of the horizontal distribution of irrigation water in soil increased significantly with the decrease of hose length from 80 to 40 m. When irrigated at jointing stage, the water content of 0-200 cm soil layer in each space of wheat rows had no significant difference within the 0-40 m distanced from the border initial in treatments T40 and T60. When measured at the 38-40 m, 58-60 m, and 78-80 m distanced from the border initial in treatment T80 at jointing and anthesis stages, the water content in 0-200 cm soil layer had the same change pattern, i. e., decreased with the increasing distance from micro-sprinkling hose. The water consumption amounts in 40-60 cm soil layer from jointing to anthesis stages and in 20-80 cm soil layer from anthesis to maturing stages were higher in treatment T40 than in treatments T60 and T80. However, the soil water consumption amount, irrigation amount at anthesis stage, total irrigation amount, and total water consumption amount were significantly lower in treatment T40 than in treatments T60 and T80. The grain yield, yield water use efficiency increased with the hose length decreased from 80 to 40 m, but the flow decreased. Therefore, the effective irrigation area per unit time decreased with the same irrigation amounts. Considering the grain yield, water use efficiency, and the flow through micro-sprinkling hose, 40 and 60 m were considered to be the appropriate micro-sprinkling hose lengths under this experimental condition.


Asunto(s)
Riego Agrícola/métodos , Suelo/química , Triticum/crecimiento & desarrollo , Agua/metabolismo , Biomasa , China , Estaciones del Año , Semillas/crecimiento & desarrollo , Triticum/metabolismo
13.
Ying Yong Sheng Tai Xue Bao ; 22(5): 1175-82, 2011 May.
Artículo en Chino | MEDLINE | ID: mdl-21812291

RESUMEN

A field experiment was conducted to study the effects of sulfur plus resin-coated urea fertilizer on the winter wheat dry matter accumulation and allocation and grain yield. Four treatments were installed, i.e., sulfur plus resin-coated urea (SRCU), resin-coated urea (RCU), sulfur-amended conventional urea (SU), and conventional urea (U). The coated urea fertilizers were applied as basal, and the conventional urea fertilizers were 50% applied as basal and 50% applied as topdressing. There were no significant differences in the plant dry matter accumulation and grain yield between treatments RCU and U. Under the conditions the available S content in 0-20 cm soil layer was 43.2 mg x kg(-1) and the S application rate was 91.4 kg x hm(-2), treatments SRCU and SU had no significant differences in the dry matter accumulation and allocation after anthesis and the grain yield, but the amount of the assimilates after anthesis allocated in grain, the grain-filling rate at mid grain-filling stage, the 1000-grain weight, and the grain yield in the two treatments were significantly higher than those in treatment RCU. When the available S content in 0-20 cm soil layer was 105.1 mg x kg(-1) and the S application rate was 120 kg x hm(-2), the grain yield in treatment SRCU was significantly higher than that in treatment SU, but had no significant difference with that in treatments RCU and U. These results suggested that from the viewpoints of dry matter accumulation and allocation and grain yield, the nitrogen released from SRCU had the same regulation effect as the conventional urea 50% applied as basal and 50% applied as topdressing, while the regulation effect of the sulfur released from SRCU was controlled by the available S content in 0-20 cm soil layer. When the soil available S content was 43.2 mg x kg(-1), the released sulfur could promote the dry matter accumulation after anthesis and the grain-filling, and increase the grain yield significantly; when the soil available S content was 105.1 mg x kg(-1), the released sulfur from SRCU had no significant effect in increasing grain yield. Excessive S-amendment could even induce the decrease of grain yield.


Asunto(s)
Biomasa , Fertilizantes , Azufre , Triticum/crecimiento & desarrollo , Urea , Agricultura/métodos , Resinas Sintéticas , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...