Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nat Commun ; 15(1): 2645, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531874

RESUMEN

Host molecular responses to fecal microbiota transplantation (FMT) in ulcerative colitis are not well understood. Here, we profile the human colonic mucosal transcriptome prior to and following FMT or placebo to identify molecules regulated during disease remission. FMT alters the transcriptome above the effect of placebo (n = 75 vs 3 genes, q < 0.05), including modulation of structural, metabolic and inflammatory pathways. This response is attributed to responders with no consistency observed in non-responders. Regulated pathways in responders include tight junctions, calcium signalling and xenobiotic metabolism. Genes significantly regulated longitudinally in responders post-FMT could discriminate them from responders and non-responders at baseline and non-responders post-FMT, with GBP5 and IRF4 downregulation being associated with remission. Female mice with a deletion of GBP5 are more resistant to developing colitis than their wild-type littermates, showing higher colonic IRF4 phosphorylation. The colonic mucosal response discriminates UC remission following FMT, with GBP5 playing a detrimental role in colitis.


Asunto(s)
Colitis Ulcerosa , Trasplante de Microbiota Fecal , Animales , Femenino , Humanos , Ratones , Heces , Proteínas de Unión al GTP , Mucosa Intestinal , Resultado del Tratamiento
2.
Sci Adv ; 10(4): eadh3409, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277448

RESUMEN

The innate immune response contributes to the development or attenuation of acute and chronic diseases, including cancer. Microbial DNA and mislocalized DNA from damaged host cells can activate different host responses that shape disease outcomes. Here, we show that mice and humans lacking a single allele of the DNA repair protein Ku70 had increased susceptibility to the development of intestinal cancer. Mechanistically, Ku70 translocates from the nucleus into the cytoplasm where it binds to cytosolic DNA and interacts with the GTPase Ras and the kinase Raf, forming a tripartite protein complex and docking at Rab5+Rab7+ early-late endosomes. This Ku70-Ras-Raf signalosome activates the MEK-ERK pathways, leading to impaired activation of cell cycle proteins Cdc25A and CDK1, reducing cell proliferation and tumorigenesis. We also identified the domains of Ku70, Ras, and Raf involved in activating the Ku70 signaling pathway. Therapeutics targeting components of the Ku70 signalosome could improve the treatment outcomes in cancer.


Asunto(s)
Neoplasias , Transducción de Señal , Animales , Humanos , Ratones , Proliferación Celular , ADN , Sistema de Señalización de MAP Quinasas , Neoplasias/genética
3.
Sci Adv ; 9(49): eadi9566, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38055819

RESUMEN

Autosomal dominant loss-of-function (LoF) variants in cytotoxic T-lymphocyte associated protein 4 (CTLA4) cause immune dysregulation with autoimmunity, immunodeficiency and lymphoproliferation (IDAIL). Incomplete penetrance and variable expressivity are characteristic of IDAIL caused by CTLA-4 haploinsufficiency (CTLA-4h), pointing to a role for genetic modifiers. Here, we describe an IDAIL proband carrying a maternally inherited pathogenic CTLA4 variant and a paternally inherited rare LoF missense variant in CLEC7A, which encodes for the ß-glucan pattern recognition receptor DECTIN-1. The CLEC7A variant led to a loss of DECTIN-1 dimerization and surface expression. Notably, DECTIN-1 stimulation promoted human and mouse regulatory T cell (Treg) differentiation from naïve αß and γδ T cells, even in the absence of transforming growth factor-ß. Consistent with DECTIN-1's Treg-boosting ability, partial DECTIN-1 deficiency exacerbated the Treg defect conferred by CTL4-4h. DECTIN-1/CLEC7A emerges as a modifier gene in CTLA-4h, increasing expressivity of CTLA4 variants and acting in functional epistasis with CTLA-4 to maintain immune homeostasis and tolerance.


Asunto(s)
Haploinsuficiencia , Lectinas Tipo C , Animales , Humanos , Ratones , Autoinmunidad , Antígeno CTLA-4/genética , Lectinas Tipo C/genética
4.
J Neuroinflammation ; 20(1): 239, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864169

RESUMEN

BACKGROUND: Inflammasome activation and the subsequent release of pro-inflammatory cytokines including Interleukin 1ß (IL-1ß) have been widely reported to contribute to the progression of retinal degenerations, including age-related macular degeneration (AMD), the leading cause of blindness in the Western World. The role of Gasdermin D (GSDMD), a key executioner of pyroptosis following inflammasome activation, however, is less well-established. In this study we aimed to characterise the role of GSDMD in the healthy and degenerating retina, and uncover its role as a conduit for IL-1ß release, including via extracellular vesicle (EV)-mediated release. METHODS: GSDMD mutant and knockout mice, in vitro models of inflammation and a well-established in vivo model of retinal degeneration (photo-oxidative damage; PD) were utilised to explore the role and pathological contribution of GSDMD in regulating IL-1ß release and propagating retinal inflammation. RNA sequencing of whole retinas was used to investigate GSDMD-mediated inflammation during degeneration. The role of EVs in GSDMD-mediated IL-1ß release was investigated using nanoparticle tracking analysis, ELISA and EV inhibition paradigms. Finally, the therapeutic efficacy of targeting GSDMD was examined using GSDMD-specific siRNA. RESULTS: We identified in this work that mice deficient in GSDMD had better-preserved retinal function, increased photoreceptor survivability and reduced inflammation. RNA-Seq analysis revealed that GSDMD may propagate inflammation in the retina via NF-κB signalling cascades and release of pro-inflammatory cytokines. We also showed that IL-1ß was packaged and released via EV in a GSDMD-dependent manner. Finally, we demonstrated that impairing GSDMD function using RNAi or blocking EV release was able to reduce IL-1ß content in cell-free supernatant and EV. CONCLUSIONS: Taken together, these results suggest that pyroptotic pore-forming protein GSDMD plays a key role in the propagation of retinal inflammation, in particular via the release of EV-encapsulated IL-1ß. Targeting GSDMD using genetic or pharmacological inhibitors may pose a therapeutic opportunity to dampen inflammatory cascades and delay the progression of retinal degeneration.


Asunto(s)
Piroptosis , Degeneración Retiniana , Animales , Ratones , Citocinas/metabolismo , Gasderminas , Inflamasomas/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Piroptosis/fisiología
5.
Trends Biochem Sci ; 48(10): 883-893, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567806

RESUMEN

Guanylate-binding proteins (GBPs) are a family of intracellular proteins which have diverse biological functions, including pathogen sensing and host defense against infectious disease. These proteins are expressed in response to interferon (IFN) stimulation and can localize and target intracellular microbes (e.g., bacteria and viruses) by protein trafficking and membrane binding. These properties contribute to the ability of GBPs to induce inflammasome activation, inflammation, and cell death, and to directly disrupt pathogen membranes. Recent biochemical studies have revealed that human GBP1, GBP2, and GBP3 can directly bind to the lipopolysaccharide (LPS) of Gram-negative bacteria. In this review we discuss emerging data highlighting the functional versatility of GBPs, with a focus on their molecular mechanisms of pattern recognition and antimicrobial activity.


Asunto(s)
Antiinfecciosos , Proteínas Portadoras , Humanos , Proteínas de Unión al GTP/química , Inflamasomas/metabolismo , Bacterias/metabolismo , Antiinfecciosos/farmacología
6.
Methods Mol Biol ; 2691: 327-335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355555

RESUMEN

Intestinal fibroblasts maintain homeostasis and contribute to inflammatory responses and the development of cancer. Intestinal fibroblasts express pattern recognition receptors which can mount an immune response. Since intestinal fibroblasts interact with diverse immune and nonimmune cells, further insights into the biology of intestinal fibroblasts could expand our knowledge of the development, homeostasis, and pathophysiology of the intestine. Here, we describe a simple protocol for the isolation, cultivation, and maintenance of primary fibroblasts from the mouse colon. These cells express α-smooth muscle actin, a characteristic of specialized contractile fibroblasts called myofibroblasts. We also outline the use of these colonic fibroblasts for immunoblotting and immunofluorescence assays with or without stimulation with a growth factor.


Asunto(s)
Fibroblastos , Intestinos , Ratones , Animales , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Colon/metabolismo , Actinas/metabolismo
7.
EMBO Rep ; 24(6): e54600, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37073791

RESUMEN

Inflammasome signaling is a central pillar of innate immunity triggering inflammation and cell death in response to microbes and danger signals. Here, we show that two virulence factors from the human bacterial pathogen Clostridium perfringens are nonredundant activators of the NLRP3 inflammasome in mice and humans. C. perfringens lecithinase (also known as phospolipase C) and C. perfringens perfringolysin O induce distinct mechanisms of activation. Lecithinase enters LAMP1+ vesicular structures and induces lysosomal membrane destabilization. Furthermore, lecithinase induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18, and the induction of cell death independently of the pore-forming proteins gasdermin D, MLKL and the cell death effector protein ninjurin-1 or NINJ1. We also show that lecithinase triggers inflammation via the NLRP3 inflammasome in vivo and that pharmacological blockade of NLRP3 using MCC950 partially prevents lecithinase-induced lethality. Together, these findings reveal that lecithinase activates an alternative pathway to induce inflammation during C. perfringens infection and that this mode of action can be similarly exploited for sensing by a single inflammasome.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Clostridium perfringens/metabolismo , Factores de Virulencia , Inflamación , Interleucina-1beta/metabolismo , Factores de Crecimiento Nervioso , Moléculas de Adhesión Celular Neuronal
8.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944419

RESUMEN

Povidone-iodine (PVP-I) inactivates a broad range of pathogens. Despite its widespread use over decades, the safety of PVP-I remains controversial. Its extended use in the current SARS-CoV-2 virus pandemic urges the need to clarify safety features of PVP-I on a cellular level. Our investigation in epithelial, mesothelial, endothelial, and innate immune cells revealed that the toxicity of PVP-I is caused by diatomic iodine (I2), which is rapidly released from PVP-I to fuel organic halogenation with fast first-order kinetics. Eukaryotic toxicity manifests at below clinically used concentrations with a threshold of 0.1% PVP-I (wt/vol), equalling 1 mM of total available I2 Above this threshold, membrane disruption, loss of mitochondrial membrane potential, and abolition of oxidative phosphorylation induce a rapid form of cell death we propose to term iodoptosis. Furthermore, PVP-I attacks lipid rafts, leading to the failure of tight junctions and thereby compromising the barrier functions of surface-lining cells. Thus, the therapeutic window of PVP-I is considerably narrower than commonly believed. Our findings urge the reappraisal of PVP-I in clinical practice to avert unwarranted toxicity whilst safeguarding its benefits.


Asunto(s)
Antiinfecciosos Locales , COVID-19 , Yodo , Humanos , Povidona Yodada/farmacología , Povidona Yodada/uso terapéutico , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/uso terapéutico , Yodo/farmacología , SARS-CoV-2 , Muerte Celular
9.
EMBO J ; 42(6): e112558, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36762431

RESUMEN

Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.


Asunto(s)
Caspasas , Inflamasomas , Ratones , Humanos , Animales , Caspasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Moraxella catarrhalis/metabolismo , Proteínas Portadoras , Inmunidad Innata
10.
Immunol Cell Biol ; 101(5): 383-396, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36744765

RESUMEN

Many interferon (IFN)-stimulated genes are upregulated within host cells following infection with influenza and other viruses. While the antiviral activity of some IFN-stimulated genes, such as the IFN-inducible GTPase myxoma resistance (Mx)1 protein 1, has been well defined, less is known regarding the antiviral activities of related IFN-inducible GTPases of the guanylate-binding protein (GBP) family, particularly mouse GBPs, where mouse models can be used to assess their antiviral properties in vivo. Herein, we demonstrate that mouse GBP1 (mGBP1) was upregulated in a mouse airway epithelial cell line (LA-4 cells) following pretreatment with mouse IFNα or infection by influenza A virus (IAV). Whereas doxycycline-inducible expression of mouse Mx1 (mMx1) in LA-4 cells resulted in reduced susceptibility to IAV infection and reduced viral growth, inducible mGBP1 did not. Moreover, primary cells isolated from mGBP1-deficient mice (mGBP1-/- ) showed no difference in susceptibility to IAV and mGBP1-/- macrophages showed no defect in IAV-induced NLRP3 (NLR family pyrin domain containing 3) inflammasome activation. After intranasal IAV infection, mGBP1-/- mice also showed no differences in virus replication or induction of inflammatory responses in the airways during infection. Thus, using complementary approaches such as mGBP1 overexpression, cells from mGBP1-/- mice and intranasal infection of mGBP1-/- we demonstrate that mGBP1 does not play a major role in modulating IAV infection in vitro or in vivo.


Asunto(s)
Proteínas de Unión al GTP , Gripe Humana , Animales , Humanos , Ratones , Antivirales/metabolismo , Virus de la Influenza A , Gripe Humana/genética , Interferones/metabolismo , Macrófagos/metabolismo , Proteínas de Unión al GTP/metabolismo
11.
PLoS One ; 17(11): e0277019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36318583

RESUMEN

Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen with growing clinical significance globally. A. baumannii has an exceptional ability to rapidly develop drug resistance. It is frequently responsible for ventilator-associated pneumonia in clinical settings and inflammation resulting in severe sepsis. The inflammatory response is mediated by host pattern-recognition receptors and the inflammasomes. Inflammasome activation triggers inflammatory responses, including the secretion of the pro-inflammatory cytokines IL-1ß and IL-18, the recruitment of innate immune effectors against A. baumannii infection, and the induction programmed cell death by pyroptosis. An important knowledge gap is how variation among clinical isolates affects the host's innate response and activation of the inflammasome during A. baumannii infection. In this study, we compared nine A. baumannii strains, including clinical locally-acquired isolates, in their ability to induce activation of the inflammasome and programmed cell death in primary macrophages, epithelial lung cell line and mice. We found a variation in survival outcomes of mice and bacterial dissemination in organs among three commercially available A. baumannii strains, likely due to the differences in virulence between strains. Interestingly, we found variability among A. baumannii strains in activation of the NLRP3 inflammasome, non-canonical Caspase-11 pathway, plasmatic secretion of the pro-inflammatory cytokine IL-1ß and programmed cell death. Our study highlights the importance of utilising multiple bacterial strains and clinical isolates with different virulence to investigate the innate immune response to A. baumannii infection.


Asunto(s)
Acinetobacter baumannii , Inflamasomas , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-1beta/metabolismo , Caspasas/metabolismo , Macrófagos/metabolismo
12.
iScience ; 25(8): 104856, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992066

RESUMEN

Waldenström macroglobulinemia (WM) is characterized by bone marrow infiltration with malignant lymphoplasmacytic cells (LPCs), a smaller population of plasma cells (PCs), and hypersecretion of IgM monoclonal protein. Here, we show that CD45low, CD38+, and CD138+ PCs and CD45high, CD38-, CD138-, CD19+, and CD20+ LPCs carry a heterozygous L265P mutation in the Toll-like receptor signaling adaptor MYD88. Both PCs and LPCs express the same auto-reactive IgHV sequences, suggesting a similar clonal origin and role for auto-antigens in WM cell survival. PCs are primarily responsible for IgM production even without substantial cell proliferation. When cultured in isolation, LPCs give rise to more differentiated PCs and secrete less IgM. Our analyses suggest that malignant PCs arise from the clonal LPC population, and are primarily responsible for IgM secretion in WM. Targeting malignant PCs may have therapeutic benefits in the treatment of WM and improve the duration of response and potentially, survival.

13.
Nat Commun ; 13(1): 4395, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906252

RESUMEN

Inflammasomes are cytosolic signaling complexes capable of sensing microbial ligands to trigger inflammation and cell death responses. Here, we show that guanylate-binding proteins (GBPs) mediate pathogen-selective inflammasome activation. We show that mouse GBP1 and GBP3 are specifically required for inflammasome activation during infection with the cytosolic bacterium Francisella novicida. We show that the selectivity of mouse GBP1 and GBP3 derives from a region within the N-terminal domain containing charged and hydrophobic amino acids, which binds to and facilitates direct killing of F. novicida and Neisseria meningitidis, but not other bacteria or mammalian cells. This pathogen-selective recognition by this region of mouse GBP1 and GBP3 leads to pathogen membrane rupture and release of intracellular content for inflammasome sensing. Our results imply that GBPs discriminate between pathogens, confer activation of innate immunity, and provide a host-inspired roadmap for the design of synthetic antimicrobial peptides that may be of use against emerging and re-emerging pathogens.


Asunto(s)
Proteínas Portadoras , Inflamasomas , Animales , Bacterias/metabolismo , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Proteínas de Unión al GTP/metabolismo , Inmunidad Innata , Inflamasomas/metabolismo , Mamíferos/metabolismo , Ratones , Transducción de Señal
14.
ACS Biomater Sci Eng ; 8(6): 2709-2723, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35574832

RESUMEN

Device-associated infections remain a clinical challenge. The common strategies to prevent bacterial infection are either toxic to healthy mammalian cells and tissue or involve high doses of antibiotics that can prompt long-term negative consequences. An antibiotic-free coating strategy to suppress bacterial growth is presented herein, which concurrently promotes bone cell growth and moderates the dissolution kinetics of resorbable magnesium (Mg) biomaterials. Pure Mg as a model biodegradable material was coated with gallium-doped strontium-phosphate through a chemical conversion process. Gallium was distributed in a gradual manner throughout the strontium-phosphate coating, with a compact structure and a gallium-rich surface. It was demonstrated that the coating protected the underlying Mg parts from significant degradation in minimal essential media at physiological conditions over 9 days. In terms of bacteria culture, the liberated gallium ions from the coatings upon Mg specimens, even though in minute quantities, inhibited the growth of Gram-positiveStaphylococcus aureus, Gram-negative Escherichia coli, andPseudomonas aeruginosa ─ key pathogens causing infection and early failure of the surgical implantations in orthopedics and trauma. More importantly, the gallium dopants displayed minimal interferences with the strontium-phosphate-based coating which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures. This work provides a new strategy to prevent bacterial infection and control the degradation behavior of Mg-based orthopedic implants, while preserving osteogenic features of the devices.


Asunto(s)
Galio , Ortopedia , Animales , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Galio/farmacología , Magnesio/farmacología , Mamíferos , Fosfatos/química , Fosfatos/farmacología , Estroncio/química , Estroncio/farmacología
15.
Sci Immunol ; 7(71): eabm1803, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35594341

RESUMEN

Clostridium species are a group of Gram-positive bacteria that cause diseases in humans, such as food poisoning, botulism, and tetanus. Here, we analyzed 10 different Clostridium species and identified that Clostridium septicum, a pathogen that causes sepsis and gas gangrene, activates the mammalian cytosolic inflammasome complex in mice and humans. Mechanistically, we demonstrate that α-toxin secreted by C. septicum binds to glycosylphosphatidylinositol (GPI)-anchored proteins on the host plasma membrane, oligomerizing and forming a membrane pore that is permissive to efflux of magnesium and potassium ions. Efflux of these cytosolic ions triggers the activation of the innate immune sensor NLRP3, inducing activation of caspase-1 and gasdermin D, secretion of the proinflammatory cytokines interleukin-1ß and interleukin-18, pyroptosis, and plasma membrane rupture via ninjurin-1. Furthermore, α-toxin of C. septicum induces rapid inflammasome-mediated lethality in mice and pharmacological inhibition of the NLRP3 inflammasome using MCC950 prevents C. septicum-induced lethality. Overall, our results reveal that cytosolic innate sensing of α-toxin is central to the recognition of C. septicum infection and that therapeutic blockade of the inflammasome pathway may prevent sepsis and death caused by toxin-producing pathogens.


Asunto(s)
Toxinas Bacterianas , Proteínas Ligadas a GPI , Inflamasomas , Animales , Toxinas Bacterianas/metabolismo , Clostridium septicum/química , Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Inflamasomas/metabolismo , Mamíferos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis
16.
Immunol Cell Biol ; 100(7): 529-546, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35471730

RESUMEN

To control infections phagocytes can directly kill invading microbes. Macrophage-expressed gene 1 (Mpeg1), a pore-forming protein sometimes known as perforin-2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68-positive endolysosomal compartment, and that it exists predominantly as a processed, two-chain disulfide-linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response.


Asunto(s)
Presentación de Antígeno , Proteínas Citotóxicas Formadoras de Poros , Animales , Infecciones Bacterianas/inmunología , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Proteínas Citotóxicas Formadoras de Poros/inmunología , Virosis/inmunología
17.
Cell Host Microbe ; 30(4): 410-412, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35421330

RESUMEN

The gasdermin family of cell death executor proteins are activated by different proteases under different physiological conditions. A recent study by Deng et al. in Nature revealed that the cysteine protease SpeB from the human pathogen Streptococcus pyogenes directly cleaves and activates Gasdermin A to induce pyroptosis in skin cells.


Asunto(s)
Piroptosis , Streptococcus pyogenes , Muerte Celular , Humanos , Péptido Hidrolasas
18.
Nat Rev Cancer ; 22(7): 397-413, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35355007

RESUMEN

The immune system plays a critical role in shaping all facets of cancer, from the early initiation stage through to metastatic disease and resistance to therapy. Our understanding of the importance of the adaptive arm of the immune system in antitumour immunity has led to the implementation of immunotherapy with immune checkpoint inhibitors in numerous cancers, albeit with differing efficacy. By contrast, the clinical utility of innate immunity in cancer has not been exploited, despite dysregulated innate immunity being a feature of at least one-third of all cancers associated with tumour-promoting chronic inflammation. The past two decades have seen innate immune pattern recognition receptors (PRRs) emerge as critical regulators of the immune response to microbial infection and host tissue damage. More recently, it has become apparent that in many cancer types, PRRs play a central role in modulating a vast array of tumour-inhibiting and tumour-promoting cellular responses both in immune cells within the tumour microenvironment and directly in cancer cells. Herein, we provide a comprehensive overview of the fast-evolving field of PRRs in cancer, and discuss the potential to target PRRs for drug development and biomarker discovery in a wide range of oncology settings.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Inmunidad Innata , Inmunoterapia , Receptores de Reconocimiento de Patrones , Microambiente Tumoral
19.
Immunity ; 55(3): 423-441.e9, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139355

RESUMEN

Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.


Asunto(s)
COVID-19/inmunología , Caspasa 8/metabolismo , Interferón gamma/metabolismo , Linfohistiocitosis Hemofagocítica/inmunología , Macrófagos/inmunología , Mitocondrias/metabolismo , SARS-CoV-2/fisiología , Animales , Caspasa 8/genética , Células Cultivadas , Citotoxicidad Inmunológica , Humanos , Interferón gamma/genética , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Transducción de Señal , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
20.
Genome Med ; 13(1): 133, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412659

RESUMEN

BACKGROUND: The enrichment of Gram-negative bacteria of oral origin in the esophageal microbiome has been associated with the development of metaplasia. However, to date, no study has comprehensively assessed the relationships between the esophageal microbiome and the host. METHODS: Here, we examine the esophageal microenvironment in gastro-esophageal reflux disease and metaplasia using multi-omics strategies targeting the microbiome and host transcriptome, followed by targeted culture, comparative genomics, and host-microbial interaction studies of bacterial signatures of interest. RESULTS: Profiling of the host transcriptome from esophageal mucosal biopsies revealed profound changes during metaplasia. Importantly, five biomarkers showed consistent longitudinal changes with disease progression from reflux disease to metaplasia. We showed for the first time that the esophageal microbiome is distinct from the salivary microbiome and the enrichment of Campylobacter species as a consistent signature in disease across two independent cohorts. Shape fitting and matrix correlation identified associations between the microbiome and host transcriptome profiles, with a novel co-exclusion relationship found between Campylobacter and napsin B aspartic peptidase. Targeted culture of Campylobacter species from the same cohort revealed a subset of isolates to have a higher capacity to survive within primary human macrophages. Comparative genomic analyses showed these isolates could be differentiated by specific genomic features, one of which was validated to be associated with intracellular fitness. Screening for these Campylobacter strain-specific signatures in shotgun metagenomics data from another cohort showed an increase in prevalence with disease progression. Comparative transcriptomic analyses of primary esophageal epithelial cells exposed to the Campylobacter isolates revealed expression changes within those infected with strains with high intracellular fitness that could explain the increased likelihood of disease progression. CONCLUSIONS: We provide a comprehensive assessment of the esophageal microenvironment, identifying bacterial strain-specific signatures with high relevance to progression of metaplasia.


Asunto(s)
Esófago de Barrett/etiología , Esófago de Barrett/metabolismo , Biomarcadores , Microambiente Celular , Susceptibilidad a Enfermedades , Esófago/metabolismo , Adulto , Esófago de Barrett/patología , Microambiente Celular/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Esófago/microbiología , Esófago/patología , Femenino , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/etiología , Perfilación de la Expresión Génica , Infecciones por Bacterias Gramnegativas/complicaciones , Infecciones por Bacterias Gramnegativas/microbiología , Interacciones Huésped-Patógeno/genética , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Mastocitos/inmunología , Mastocitos/metabolismo , Metaplasia , Microbiota , Persona de Mediana Edad , Modelos Biológicos , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...