Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(21): 10066-10073, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37846924

RESUMEN

Prussian white (PW) is considered as a promising cathode material for potassium-ion batteries (KIBs) due to its low cost and high theoretical capacity. However, the high water content and structural defects and the strict synthesis conditions of PW lead to its unsatisfactory cycling performance and low specific capacity, hindering its practical applications. Herein, a template-engaged reduction method is proposed, using MIL-88B(Fe) as a self-template and KI as the reducing agent to prepare K-rich PW with low defects and water content. Furthermore, the hierarchical porous spindle-like morphology can be inherited from the precursor, furnishing sufficient active sites and reducing the ion diffusion path. Consequently, when applied as a KIB cathode material, spindle-like PW (K1.72Fe[Fe(CN)6]0.96·0.342H2O) manifested remarkable potassium storage properties. Notably, a full cell assembled by the spindle-like PW cathode and graphite anode exhibited a large energy density of ∼216.7 Wh kg-1, demonstrating its huge potential for energy storage systems.

2.
Sci Bull (Beijing) ; 68(16): 1819-1842, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37516661

RESUMEN

Magnesium-ion batteries (MIBs) are considered strong candidates for next-generation energy-storage systems owing to their high theoretical capacity, divalent nature and the natural abundancy of magnesium (Mg) resources on Earth. However, the development of MIBs has been mainly limited by the incompatibility of Mg anodes with several Mg salts and conventional organic-liquid electrolytes. Therefore, one major challenge faced by MIBs technology lies on developing safe electrolytes, which demonstrate appropriate electrochemical voltage window and compatibility with Mg anode. This review discusses the development of MIBs from the point-of-view of the electrolyte syntheses. A systematic assessment of promising electrolyte design strategies is proposed including liquid and solid-state electrolytes. Liquid-based electrolytes have been largely explored and can be categorized by solvent-type: organic solvent, aqueous solvent, and ionic-liquids. Organic-liquid electrolytes usually present high electrochemical and chemical stability but are rather dangerous, while aqueous electrolytes present high ionic conductivity and eco-friendliness but narrow electrochemical stability window. Some ionic-liquid electrolytes have proved outstanding performance but are fairly expensive. As alternative to liquid electrolytes, solid-state electrolytes are increasingly attractive to increase energy density and safety. However, improving the ionic conductivity of Mg ions in these types of electrolytes is extremely challenging. We believe that this comprehensive review will enable researchers to rapidly grasp the problems faced by electrolytes for MIBs and the electrolyte design strategies proposed to this date.

3.
Small ; 19(34): e2301954, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086143

RESUMEN

Magnesium-ion batteries (MIBs) are emerging as potential next-generation energy storage systems due to high security and high theoretical energy density. Nevertheless, the development of MIBs is limited by the lack of cathode materials with high specific capacity and cyclic stability. Currently, transition metal sulfides are considered as a promising class of cathode materials for advanced MIBs. Herein, a template-based strategy is proposed to successfully fabricate metal-organic framework-derived in-situ porous carbon nanorod-encapsulated CuS quantum dots (CuS-QD@C nanorods) via a two-step method of sulfurization and cation exchange. CuS quantum dots have abundant electrochemically active sites, which facilitate the contact between the electrode and the electrolyte. In addition, the tight combination of CuS quantum dots and porous carbon nanorods increases the electronic conductivity while accelerating the transport speed of ions and electrons. With these architectural and compositional advantages, when used as a cathode material for MIBs, the CuS-QD@C nanorods exhibit remarkable performance in magnesium storage, including a high reversible capacity of 323.7 mAh g-1 at 100 mA g-1 after 100 cycles, excellent long-term cycling stability (98.5 mAh g-1 after 1000 cycles at 1.0 A g-1 ), and satisfying rate performance (111.8 mA g-1 at 1.0 A g-1 ).

4.
J Colloid Interface Sci ; 635: 417-426, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36599240

RESUMEN

NaTi2(PO4)3 (NTP) is a promising anode material for sodium-ion batteries (SIBs). It has drawn wide attention because of its stable three-dimensional NASICON-type structure, proper redox potential, and large accommodation space for Na+. However, the inherent low electronic conductivity of the phosphate framework reduces its charge transfer kinetics, thus limiting its exploitation. Therefore, this paper proposes a material with carbon-coated porous NTP olive-like nanospheres (p-NTP@C) to tackle the issues above. Based on experimental data and theoretical calculations, the porous structure of the material is found to be able to provide more active sites and shorten the Na+ diffusion distance. In addition, the carbon coating can effectively improve the electron and Na+ diffusion kinetics. As the anode material for SIBs, the p-NTP@C olive-like nanospheres exhibit a high reversible capacity (127.3 mAh g-1 at 0.1 C) and ultrastable cycling performance (84.8% capacity retention after 10,000 cycles at 5 C). Furthermore, the sodium-ion full cells, composed of p-NTP@C anode and Na3V2(PO4)2F3@carbon cathode, also deliver excellent performance (75.7% capacity retention after 1000 cycles at 1 C). In brief, this nanostructure design provides a viable approach for the future development of long-life and highly stable NASICON-type anode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA