Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 8: 254, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28303143

RESUMEN

Severe infestations of Alopecurus aequalis (shortawn foxtail), a noxious weed in wheat and barley cropping systems in Japan, can occur even after application of thifensulfuron-methyl, a sulfonylurea (SU) herbicide. In the present study, nine accessions of A. aequalis growing in a single wheat field were tested for sensitivity to thifensulfuron-methyl. Seven of the nine accessions survived application of standard field rates of thifensulfuron-methyl, indicating that severe infestations likely result from herbicide resistance. Acetolactate synthase (ALS) is the target enzyme of SU herbicides. Full-length genes encoding ALS were therefore isolated to determine the mechanism of SU resistance. As a result, differences in ALS gene copy numbers among accessions were revealed. Two copies, ALS1 and ALS2, were conserved in all accessions, while some carried two additional copies, ALS3 and ALS4. A single-base deletion in ALS3 and ALS4 further indicated that they represent pseudogenes. No differences in ploidy level were observed between accessions with two or four copies of the ALS gene, suggesting that copy number varies. Resistant plants were found to carry a mutation in either the ALS1 or ALS2 gene, with all mutations causing an amino acid substitution at the Pro197 residue, which is known to confer SU resistance. Transcription of each ALS gene copy was confirmed by reverse transcription PCR, supporting involvement of these mutations in SU resistance. The information on the copy number and full-length sequences of ALS genes in A. aequalis will aid future analysis of the mechanism of resistance.

2.
Eur J Immunol ; 47(1): 60-67, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27748951

RESUMEN

Accumulating evidence suggests that activated mast cells are involved in contact hypersensitivity, although the precise mechanisms of their activation are still not completely understood. We investigated the potential of common experimental allergens to induce mast cell activation using murine bone marrow-derived cultured mast cells and rat peritoneal mast cells. Among these allergens, 1-chloro-2,4-dinitrobenzene and 1-fluoro-2,4-dinirobenzene (DNFB) were found to induce degranulation of rat peritoneal mast cells. DNFB-induced degranulation is accompanied by cytosolic Ca2+ mobilization and is significantly inhibited by pertussis toxin, U73122 (a phospholipase C inhibitor), and BAPTA (a Ca2+ chelator), raising the possibility that DNFB acts on the G protein-coupled receptors and activates Gi , which induces activation of phospholipase C, as well as known mast cell secretagogues, such as compound 48/80. DNFB could induce mast cell degranulation in the absence of serum proteins and IgE. Structure-activity relationship analyses revealed an inverse correlation between the degree of degranulation and the electron density of the C1 carbon of the DNFB derivatives. These findings raise a possibility that DNFB functions as a potent contact allergen through induction of cutaneous mast cell degranulation.


Asunto(s)
Alérgenos/inmunología , Degranulación de la Célula/inmunología , Dinitrofluorobenceno/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Alérgenos/química , Animales , Calcio/metabolismo , Citocinas/metabolismo , Dinitrofluorobenceno/análogos & derivados , Dinitrofluorobenceno/química , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Masculino , Ratones , Estructura Molecular , Unión Proteica , Multimerización de Proteína , Ratas , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA