Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931075

RESUMEN

Climate change-induced hazards, such as drought, threaten forest resilience, particularly in vulnerable regions such as the Mediterranean Basin. Maritime pine (Pinus pinaster Aiton), a model species in Western Europe, plays a crucial role in the Mediterranean forest due to its genetic diversity and ecological plasticity. This study characterizes transcriptional profiles of scion and rootstock stems of four P. pinaster graft combinations grown under well-watered conditions. Our grafting scheme combined drought-sensitive and drought-tolerant genotypes for scions (GAL1056: drought-sensitive scion; and Oria6: drought-tolerant scion) and rootstocks (R1S: drought-sensitive rootstock; and R18T: drought-tolerant rootstock). Transcriptomic analysis revealed expression patterns shaped by genotype provenance and graft combination. The accumulation of differentially expressed genes (DEGs) encoding proteins, involved in defense mechanisms and pathogen recognition, was higher in drought-sensitive scion stems and also increased when grafted onto drought-sensitive rootstocks. DEGs involved in drought tolerance mechanisms were identified in drought-tolerant genotypes as well as in drought-sensitive scions grafted onto drought-tolerant rootstocks, suggesting their establishment prior to drought. These mechanisms were associated with ABA metabolism and signaling. They were also involved in the activation of the ROS-scavenging pathways, which included the regulation of flavonoid and terpenoid metabolisms. Our results reveal DEGs potentially associated with the conifer response to drought and point out differences in drought tolerance strategies. These findings suggest genetic trade-offs between pine growth and defense, which could be relevant in selecting more drought-tolerant Pinus pinaster trees.

2.
Ecol Evol ; 10(18): 9788-9807, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005345

RESUMEN

Adaptation of long-living forest trees to respond to environmental changes is essential to secure their performance under adverse conditions. Water deficit is one of the most significant stress factors determining tree growth and survival. Maritime pine (Pinus pinaster Ait.), the main source of softwood in southwestern Europe, is subjected to recurrent drought periods which, according to climate change predictions for the years to come, will progressively increase in the Mediterranean region. The mechanisms regulating pine adaptive responses to environment are still largely unknown. The aim of this work was to go a step further in understanding the molecular mechanisms underlying maritime pine response to water stress and drought tolerance at the whole plant level. A global transcriptomic profiling of roots, stems, and needles was conducted to analyze the performance of siblings showing contrasted responses to water deficit from an ad hoc designed full-sib family. Although P. pinaster is considered a recalcitrant species for vegetative propagation in adult phase, the analysis was conducted using vegetatively propagated trees exposed to two treatments: well-watered and moderate water stress. The comparative analyses led us to identify organ-specific genes, constitutively expressed as well as differentially expressed when comparing control versus water stress conditions, in drought-sensitive and drought-tolerant genotypes. Different response strategies can point out, with tolerant individuals being pre-adapted for coping with drought by constitutively expressing stress-related genes that are detected only in latter stages on sensitive individuals subjected to drought.

3.
Tree Physiol ; 35(1): 34-46, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25536961

RESUMEN

The aim of this study was to provide new insights into how intraspecific variability in the response of key functional traits to drought dictates the interplay between gas-exchange parameters and the hydraulic architecture of European beech (Fagus sylvatica L.). Considering the relationships between hydraulic and leaf functional traits, we tested whether local adaptation to water stress occurs in this species. To address these objectives, we conducted a glasshouse experiment in which 2-year-old saplings from six beech populations were subjected to different watering treatments. These populations encompassed central and marginal areas of the range, with variation in macro- and microclimatic water availability. The results highlight subtle but significant differences among populations in their functional response to drought. Interpopulation differences in hydraulic traits suggest that vulnerability to cavitation is higher in populations with higher sensitivity to drought. However, there was no clear relationship between variables related to hydraulic efficiency, such as xylem-specific hydraulic conductivity or stomatal conductance, and those that reflect resistance to xylem cavitation (i.e., Ψ(12), the water potential corresponding to a 12% loss of stem hydraulic conductivity). The results suggest that while a trade-off between photosynthetic capacity at the leaf level and hydraulic function of xylem could be established across populations, it functions independently of the compromise between safety and efficiency of the hydraulic system with regard to water use at the interpopulation level.


Asunto(s)
Aclimatación , Sequías , Fagus/fisiología , Fotosíntesis , Hojas de la Planta/fisiología , Xilema/anatomía & histología , Fagus/anatomía & histología , Xilema/fisiología
4.
BMC Genomics ; 15: 464, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24919981

RESUMEN

BACKGROUND: Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. RESULTS: High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. CONCLUSIONS: The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.


Asunto(s)
Sequías , Interacción Gen-Ambiente , Fotosíntesis/genética , Pinus/genética , Pinus/metabolismo , Sitios de Carácter Cuantitativo , Estrés Fisiológico/genética , Alelos , Mapeo Cromosómico , Biología Computacional , Cruzamientos Genéticos , Estudios de Asociación Genética , Ligamiento Genético , Genoma de Planta , Genómica , Escala de Lod , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...