Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
J Med Virol ; 96(5): e29658, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727043

RESUMEN

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. Due to the limited data available, the World Health Organization (WHO) considers public health risk to the general population to be low. The present study investigated the genetic variation and molecular evolution of E11 genomes collected from May to December 2023. Whole genome sequencing (WGS) was performed for 16 E11 strains. Phylogenetic analysis on WG showed how all Italian strains belonged to genogroup D5, similarly to other E11 strains recently reported in France and Germany all together aggregated into separate clusters. A cluster-specific recombination pattern was also identified using phylogenetic analysis of different genome regions. Echovirus 6 was identified as the major recombinant virus in 3Cpro and 3Dpol regions. The molecular clock analysis revealed that the recombination event probably occurred in June 2018 (95% HPD interval: Jan 2016-Jan 2020). Shannon entropy analyses, within P1 region, showed how 11 amino acids exhibited relatively high entropy. Five of them were exposed on the canyon region which is responsible for receptor binding with the neonatal Fc receptor. The present study showed the recombinant origin of a new lineage of E11 associated with severe neonatal infections.


Asunto(s)
Infecciones por Echovirus , Enterovirus Humano B , Genoma Viral , Genotipo , Filogenia , Recombinación Genética , Humanos , Recién Nacido , Genoma Viral/genética , Enterovirus Humano B/genética , Enterovirus Humano B/clasificación , Enterovirus Humano B/aislamiento & purificación , Infecciones por Echovirus/virología , Infecciones por Echovirus/epidemiología , Variación Genética , Secuenciación Completa del Genoma , Evolución Molecular , Italia/epidemiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38472522

RESUMEN

PURPOSE: Campylobacter is a frequent cause of enteric infections with common antimicrobial resistance issues. The most recent reports of campylobacteriosis in Italy include data from 2013 to 2016. We aimed to provide national epidemiological and microbiological data on human Campylobacter infections in Italy during the period 2017-2021. METHODS: Data was collected from 19 Hospitals in 13 Italian Regions. Bacterial identification was performed by mass spectrometry. Antibiograms were determined with Etest or Kirby-Bauer (EUCAST criteria). RESULTS: In total, 5419 isolations of Campylobacter spp. were performed. The most common species were C. jejuni (n = 4535, 83.7%), followed by C. coli (n = 732, 13.5%) and C. fetus (n = 34, 0.6%). The mean age of patients was 34.61 years and 57.1% were males. Outpatients accounted for 54% of the cases detected. Campylobacter were isolated from faeces in 97.3% of cases and in 2.7% from blood. C. fetus was mostly isolated from blood (88.2% of cases). We tested for antimicrobial susceptibility 4627 isolates (85.4%). Resistance to ciprofloxacin and tetracyclines was 75.5% and 54.8%, respectively; resistance to erythromycin was 4.8%; clarithromycin 2% and azithromycin 2%. 50% of C. jejuni and C. coli were resistant to ≥ 2 antibiotics. Over the study period, resistance to ciprofloxacin and tetracyclines significantly decreased (p < 0.005), while resistance to macrolides remained stable. CONCLUSION: Campylobacter resistance to fluoroquinolones and tetracyclines in Italy is decreasing but is still high, while macrolides retain good activity.

4.
Cell Death Dis ; 15(2): 105, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302438

RESUMEN

Aconitate decarboxylase 1 (ACOD1) is the enzyme synthesizing itaconate, an immuno-regulatory metabolite tuning host-pathogen interactions. Such functions are achieved by affecting metabolic pathways regulating inflammation and microbe survival. However, at the whole-body level, metabolic roles of itaconate remain largely unresolved. By using multiomics-integrated approaches, here we show that ACOD1 responds to high-fat diet consumption in mice by promoting gut microbiota alterations supporting metabolic disease. Genetic disruption of itaconate biosynthesis protects mice against obesity, alterations in glucose homeostasis and liver metabolic dysfunctions by decreasing meta-inflammatory responses to dietary lipid overload. Mechanistically, fecal metagenomics and microbiota transplantation experiments demonstrate such effects are dependent on an amelioration of the intestinal ecosystem composition, skewed by high-fat diet feeding towards obesogenic phenotype. In particular, unbiased fecal microbiota profiling and axenic culture experiments point towards a primary role for itaconate in inhibiting growth of Bacteroidaceae and Bacteroides, family and genus of Bacteroidetes phylum, the major gut microbial taxon associated with metabolic health. Specularly to the effects imposed by Acod1 deficiency on fecal microbiota, oral itaconate consumption enhances diet-induced gut dysbiosis and associated obesogenic responses in mice. Unveiling an unrecognized role of itaconate, either endogenously produced or exogenously administered, in supporting microbiota alterations underlying diet-induced obesity in mice, our study points ACOD1 as a target against inflammatory consequences of overnutrition.


Asunto(s)
Microbioma Gastrointestinal , Succinatos , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Obesidad/metabolismo
5.
J Clin Med ; 12(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38137670

RESUMEN

BACKGROUND: Beauveria bassiana is a filamentous fungus commonly used as an insecticide that rarely causes keratitis. METHODS: Patients affected by Beauveria bassiana keratitis were retrospectively recruited at San Raffaele Hospital (Milan, Italy) between 2020 and 2022. All subjects underwent comprehensive ophthalmic evaluation, including in vivo confocal microscopy (IVCM) and microbiologic examination of corneal scrapings. Beauveria bassiana was identified using 18S rDNA targeted PCR. RESULTS: Four eyes of four patients (51 ± 8.8 years old) were evaluated. The main risk factors were soft contact lens wear (75%) and trauma with vegetative matter (50%). A superficial infiltrate was displayed in the majority of patients. Three cases (75%) showed hyphae on IVCM. All patients showed clinical improvement after topical antifungal therapy, although mostly through a combination of two antifungals (75%). One patient with a deeper infection required a systemic antifungal agent after one month of topical therapy. All cases required debridement to reduce the microbial load and enhance drug penetration. All patients experienced keratitis resolution following medical treatment (average: 3.3 months). CONCLUSIONS: The identification of risk factors and the early diagnosis of Beauveria bassiana keratitis are fundamental in order to avoid its penetration in the deeper corneal stromal layers. Topical antifungal drugs, possibly accompanied by ulcer debridement, may be a successful treatment if instilled from the early phases of the disease.

6.
Mol Ther Nucleic Acids ; 34: 102052, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38028201

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive single-stranded RNA virus, engages in complex interactions with host cell proteins throughout its life cycle. While these interactions enable the host to recognize and inhibit viral replication, they also facilitate essential viral processes such as transcription, translation, and replication. Many aspects of these virus-host interactions remain poorly understood. Here, we employed the catRAPID algorithm and utilized the RNA-protein interaction detection coupled with mass spectrometry technology to predict and validate the host proteins that specifically bind to the highly structured 5' and 3' terminal regions of the SARS-CoV-2 RNA. Among the interactions identified, we prioritized pseudouridine synthase PUS7, which binds to both ends of the viral RNA. Using nanopore direct RNA sequencing, we discovered that the viral RNA undergoes extensive post-transcriptional modifications. Modified consensus regions for PUS7 were identified at both terminal regions of the SARS-CoV-2 RNA, including one in the viral transcription regulatory sequence leader. Collectively, our findings offer insights into host protein interactions with the SARS-CoV-2 UTRs and highlight the likely significance of pseudouridine synthases and other post-transcriptional modifications in the viral life cycle. This new knowledge enhances our understanding of virus-host dynamics and could inform the development of targeted therapeutic strategies.

7.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37765112

RESUMEN

Antibiotic resistance is a public health problem with increasingly alarming data being reported. Gram-positive bacteria are among the protagonists of severe nosocomial and community infections. The objective of this review is to conduct an extensive examination of emerging treatments for Gram-positive infections including ceftobiprole, ceftaroline, dalbavancin, oritavancin, omadacycline, tedizolid, and delafloxacin. From a methodological standpoint, a comprehensive analysis on clinical trials, molecular structure, mechanism of action, microbiological targeting, clinical use, pharmacokinetic/pharmacodynamic features, and potential for therapeutic drug monitoring will be addressed. Each antibiotic paragraph is divided into specialized microbiological, clinical, and pharmacological sections, including detailed and appropriate tables. A better understanding of the latest promising advances in the field of therapeutic options could lead to the development of a better approach in managing antimicrobial therapy for multidrug-resistant Gram-positive pathogens, which increasingly needs to be better stratified and targeted.

9.
EBioMedicine ; 91: 104567, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37062177

RESUMEN

BACKGROUND: In preclinical models of Type 1 Diabetes (T1D) the integrity of the gut barrier (GB) is instrumental to avoid dysregulated crosstalk between the commensal microbiota and immune cells and to prevent autoimmunity. The GB is composed of the intestinal epithelial barrier (IEB) and of the mucus layer containing mucins and antimicrobial peptides (AMPs) that are crucial to maintain immune tolerance. In preclinical models of T1D the alterations of the GB primarily affect the mucus layer. In human T1D increased gut permeability and IEB damage have been demonstrated but the integrity of the mucus layer was never assessed. METHODS: We evaluated GB integrity by measuring serological markers of IEB damage (serological levels of zonulin) and bacterial translocation such as lipopolysaccharide binding protein (LBP) and myeloid differentiation protein 2 (MD2), and mRNA expression of tight junction proteins, mucins and AMPs in intestinal tissue of T1D patients and healthy controls (HC). Simultaneously, we performed immunological profiling on intestinal tissue and 16S rRNA analysis on the mucus-associated gut microbiota (MAGM). FINDINGS: Our data show a GB damage with mucus layer alterations and reduced mRNA expression of several mucins (MUC2, MUC12, MUC13, MUC15, MUC20, MUC21) and AMPs (HD4 and HD5) in T1D patients. Mucus layer alterations correlated with reduced relative abundance of short chain fatty acids (SCFA)-producing bacteria such as Bifidobacterium dentium, Clostridium butyricum and Roseburia intestinalis that regulate mucin expression and intestinal immune homeostasis. In T1D patients we also found intestinal immune dysregulation with higher percentages of effector T cells such as T helper (Th) 1, Th17 and TNF-α+ T cells. INTERPRETATION: Our data show that mucus layer alterations are present in T1D subjects and associated with dysbiosis and immune dysregulation. FUNDING: Research Grants from the Juvenile Diabetes Foundation (Grant 1-INO-2018-640-A-N to MF and 2-SRA-2019-680-S-B to JD) and from the Italian Ministry of Health (Grant RF19-12370721 to MF).


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Mucosa Intestinal/metabolismo , Disbiosis/metabolismo , ARN Ribosómico 16S/metabolismo , Mucinas/metabolismo , Moco/metabolismo , ARN Mensajero/metabolismo
10.
J Med Virol ; 95(3): e28643, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890648

RESUMEN

Since early May 2022, some monkeypox virus (MPXV) infections have been reported from countries where the disease is not endemic. Within 2 months, the number of patients has increased extensively, becoming the most considerable MPXV outbreak described. Smallpox vaccines demonstrated high efficacy against MPXVs in the past and are considered a crucial outbreak control measure. However, viruses isolated during the current outbreak carry distinct genetic variations, and the cross-neutralizing capability of antibodies remains to be assessed. Here we report that serum antibodies elicited by first-generation smallpox vaccines can neutralize the current MPXV more than 40 years after vaccine administration.


Asunto(s)
Mpox , Vacuna contra Viruela , Viruela , Humanos , Monkeypox virus , Mpox/epidemiología , Mpox/prevención & control , Vacuna contra Viruela/genética , Vacunación
11.
Microorganisms ; 11(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36838279

RESUMEN

The SARS-CoV-2 protease (3CLpro) is one of the key targets for the development of efficacious drugs for COVID-19 treatment due to its essential role in the life cycle of the virus and exhibits high conservation among coronaviruses. Recent studies have shown that flavonoids, which are small natural molecules, have antiviral activity against coronaviruses (CoVs), including SARS-CoV-2. In this study, we identified the docking sites and binding affinity of several natural compounds, similar to flavonoids, and investigated their inhibitory activity towards 3CLpro enzymatic activity. The selected compounds were then tested in vitro for their cytotoxicity, for antiviral activity against SARS-CoV-2, and the replication of other coronaviruses in different cell lines. Our results showed that Baicalein (100 µg/mL) exerted strong 3CLpro activity inhibition (>90%), whereas Hispidulin and Morin displayed partial inhibition. Moreover, Baicalein, up to 25 µg/mL, hindered >50% of SARS-CoV-2 replication in Vero E6 cultures. Lastly, Baicalein displayed antiviral activity against alphacoronavirus (Feline-CoV) and betacoronavirus (Bovine-CoV and HCoV-OC43) in the cell lines. Our study confirmed the antiviral activity of Baicalein against SARS-CoV-2 and demonstrated clear evidence of its pan-coronaviral activity.

13.
Biosensors (Basel) ; 13(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36832035

RESUMEN

Since the emergence of the COVID-19 pandemic in December 2019, the SARS-CoV-2 virus continues to evolve into many variants emerging around the world. To enable regular surveillance and timely adjustments in public health interventions, it is of the utmost importance to accurately monitor and track the distribution of variants as rapidly as possible. Genome sequencing is the gold standard for monitoring the evolution of the virus, but it is not cost-effective, rapid and easily accessible. We have developed a microarray-based assay that can distinguish known viral variants present in clinical samples by simultaneously detecting mutations in the Spike protein gene. In this method, the viral nucleic acid, extracted from nasopharyngeal swabs, after RT-PCR, hybridizes in solution with specific dual-domain oligonucleotide reporters. The domains complementary to the Spike protein gene sequence encompassing the mutation form hybrids in solution that are directed by the second domain ("barcode" domain) at specific locations on coated silicon chips. The method utilizes characteristic fluorescence signatures to unequivocally differentiate, in a single assay, different known SARS-CoV-2 variants. In the nasopharyngeal swabs of patients, this multiplex system was able to genotype the variants which have caused waves of infections worldwide, reported by the WHO as being of concern (VOCs), namely Alpha, Beta, Gamma, Delta and Omicron variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Glicoproteína de la Espiga del Coronavirus
14.
Infect Dis (Lond) ; 55(4): 255-262, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36694444

RESUMEN

BACKGROUND: We investigated the role of infectious disease consultation (IDC) on therapeutic appropriateness in Gram-negative bloodstream infections (GNBSIs) in a setting with a high proportion of antibiotic resistance. Secondary outcomes were in-hospital mortality and the impact of rapid diagnostic tests (RDTs). METHODS: Retrospective study on hospitalised patients with GNBSIs. Therapy was deemed appropriate if it had the narrowest spectrum considering infection and patients' characteristics. Interventional-IDC (I-IDC) group included patients with IDC-advised first appropriate or last non-appropriate therapy. Time to first appropriate therapy and survival were evaluated by Kaplan-Meier curves. Factors associated with therapy appropriateness were assessed by multivariate Cox proportional-hazard models. RESULTS: 471 patients were included. High antibiotic resistance rates were detected: quinolones 45.5%, third-generation cephalosporins 37.4%, carbapenems 7.9%. I-IDC was performed in 31.6% of patients (149/471), RDTs in 70.7% (333/471). The 7-day probability of appropriate treatment was 91.9% (95% confidence interval [95%CI]: 86.4-95.8%) vs. 75.8% (95%CI: 70.9-80.4%) with and without I-IDC, respectively (p-value = 0.0495); 85.5% (95%CI: 81.3-89.1%) vs. 69.4% (95%CI: 61.3-77.2%) with and without RDTs, respectively (p-value = 0.0023). Compared to RDTs alone, the combination with I-IDC was associated with a higher proportion of appropriate therapies at day 7: 81.9% (95%CI: 76.4-86.7%) vs. 92.6% (95%CI: 86.3-96.7%). At multivariate analysis, I-IDC and RDTs were associated with time to first appropriate therapy [adjusted hazard-ratio 1.292 (95%CI: 1.014-1.647) and 1.383 (95%CI: 1.080-1.771), respectively], with no impact on mortality. CONCLUSIONS: In a setting with a high proportion of antibiotic resistance, IDC and RDTs were associated with earlier prescription of appropriate therapy in GNBSIs, without impact on mortality.


Asunto(s)
Bacteriemia , Enfermedades Transmisibles , Infecciones por Bacterias Gramnegativas , Sepsis , Humanos , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Bacteriemia/diagnóstico , Derivación y Consulta , Sepsis/tratamiento farmacológico , Enfermedades Transmisibles/tratamiento farmacológico
16.
Blood Adv ; 7(9): 1621-1634, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36409602

RESUMEN

Fluoroquinolone prophylaxis's (FQ-P) usefulness in patients with neutropenia is controversial. In recent decades, Italian epidemiological data has shown worrisome rates of FQ resistance. A single-center cohort study on 136 autologous stem cell transplantations (ASCTs) and 223 allogeneic hematopoietic stem cell transplantations (allo-HSCTs) was performed from January 2018 to December 2020. Piperacillin/tazobactam was the first-line therapy for febrile neutropenia (FN). Since February 2019, FQ-P has been omitted. We evaluated the day +30 posttransplant cumulative incidence function (CIF) of gram-negative bacteria pre-engraftment bloodstream infections (PE-BSIs) and any changes in antimicrobial resistance, FN, and infection-related mortality (IRM). In ASCTs, ≥1 FN episode occurred in 74.3% of transplants, without differences among groups (P = .66). CIF of gram-negative bacteria PE-BSI was 10.1%, with a significant difference according to FQ-P (0% [LEVO-group] vs 14.1% [NO-LEVO-group], P = .016). CIF of IRM was 0% in both groups. In allo-HSCTs, ≥1 FN episode occurred in 96.4% of transplants, without differences among groups (P = .72). CIF of gram-negative bacteria PE-BSI was 28%, significantly higher without FQ-P (14.7% [LEVO-group] vs 34.4% [NO-LEVO-group], P = .003). CIF of IRM was 5%, superimposable in both groups (P = .62). Comparing antimicrobial resistance among gram-negative bacteria of allo-HSCT setting, in the group without FQ-P, a significantly higher proportion of pathogens was susceptible to piperacillin/tazobactam (71% vs 30%, P = .026), FQ (49% vs 10%, P = .03), and carbapenems (95% vs 50%, P = .001). FQ-P discontinuation increased gram-negative bacteria PE-BSI but did not impact IRM, both in the ASCT and allo-HSCT settings; importantly, it concurred to significantly decrease antimicrobial resistance in gram-negative bacteria.


Asunto(s)
Antiinfecciosos , Infecciones por Bacterias Gramnegativas , Neutropenia , Humanos , Levofloxacino/farmacología , Levofloxacino/uso terapéutico , Estudios de Cohortes , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Trasplante Homólogo , Estudios Retrospectivos , Neutropenia/tratamiento farmacológico , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología , Antiinfecciosos/uso terapéutico , Piperacilina/uso terapéutico , Tazobactam/uso terapéutico
18.
Biomedicines ; 10(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36140168

RESUMEN

Both emerging viruses and well-known viral pathogens endowed with neurotropism can either directly impair neuronal functions or induce physio-pathological changes by diffusing from the periphery through neurosensory-epithelial connections. However, developing a reliable and reproducible in vitro system modeling the connectivity between the different human sensory neurons and peripheral tissues is still a challenge and precludes the deepest comprehension of viral latency and reactivation at the cellular and molecular levels. This study shows a stable topographic neurosensory-epithelial connection on a chip using human stem cell-derived dorsal root ganglia (DRG) organoids. Bulk and single-cell transcriptomics showed that different combinations of key receptors for herpes simplex virus 1 (HSV-1) are expressed by each sensory neuronal cell type. This neuronal-epithelial circuitry enabled a detailed analysis of HSV infectivity, faithfully modeling its dynamics and cell type specificity. The reconstitution of an organized connectivity between human sensory neurons and keratinocytes into microfluidic chips provides a powerful in vitro platform for modeling viral latency and reactivation of human viral pathogens.

19.
New Microbiol ; 45(3): 199-209, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35920875

RESUMEN

The spread of multidrug-resistant (MDR) K. pneumoniae carbapenemase-producing bacteria (KPC) is one of the most serious threats to global public health. Due to the limited antibiotic options, colis- tin often represents a therapeutic choice. In this study, we performed Whole-Genome Sequencing (WGS) by Illumina and Nanopore platforms on four colistin-resistant K. pneumoniae isolates (CoRKp) to explore the resistance profile and the mutations involved in colistin resistance. Mapping reads with reference sequence of the most com- mon genes involved in colistin resistance did not show the presence of mobile colistin resistance (mcr) genes in all CoRKp. Complete or partial deletions of mgrB gene were observed in three out of four CoRKp, while in one CoRKp the mutation V24G on phoQ was identified. Complementation assay with proper wild type genes restored colistin susceptibility, validating the role of the amino acid substitution V24G and, as already described in the literature, confirming the key role of mgrB alterations in colistin resistance. In conclusion, this study allowed the identification of the novel mutation on phoQ gene involved in colistin resistance phenotype.


Asunto(s)
Colistina , Infecciones por Klebsiella , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Colistina/farmacología , Colistina/uso terapéutico , Farmacorresistencia Bacteriana/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Mutación , beta-Lactamasas/genética
20.
J Prev Med Hyg ; 63(1): E139-E141, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35647368

RESUMEN

Endophthalmitis due to Listeria monocytogenes is a rare form of listeriosis. Here, we report two cases that occurred in patients with different medical history, a 46-years-old woman with no comorbidities and an elderly man with several comorbidities. There was no history of trauma or surgery in either patient suggesting an endogenous origin. Despite antibiotic treatment, both patients showed poor visual acuity outcomes. Subtyping clinical isolates using whole genome sequencing could allow to characterise Listeria monocytogenes strains involved in rare clinical manifestation, such as in unusual anatomical sites, even in immunocompetent patients.


Asunto(s)
Endoftalmitis , Listeria monocytogenes , Listeriosis , Anciano , Endoftalmitis/tratamiento farmacológico , Femenino , Humanos , Listeria monocytogenes/genética , Listeriosis/tratamiento farmacológico , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...