Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(17): eadm9281, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38657074

RESUMEN

Critical aspects of physiology and cell function exhibit self-sustained ~24-hour variations termed circadian rhythms. In the liver, circadian rhythms play fundamental roles in maintaining organ homeostasis. Here, we established and characterized an in vitro liver experimental system in which primary human hepatocytes display self-sustained oscillations. By generating gene expression profiles of these hepatocytes over time, we demonstrated that their transcriptional state is dynamic across 24 hours and identified a set of cycling genes with functions related to inflammation, drug metabolism, and energy homeostasis. We designed and tested a treatment protocol to minimize atorvastatin- and acetaminophen-induced hepatotoxicity. Last, we documented circadian-dependent induction of pro-inflammatory cytokines when triggered by LPS, IFN-ß, or Plasmodium infection in human hepatocytes. Collectively, our findings emphasize that the phase of the circadian cycle has a robust impact on the efficacy and toxicity of drugs, and we provide a test bed to study the timing and magnitude of inflammatory responses over the course of infection in human liver.


Asunto(s)
Ritmo Circadiano , Hepatocitos , Inflamación , Hígado , Humanos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Inflamación/metabolismo , Hígado/metabolismo , Acetaminofén/farmacología , Atorvastatina/farmacología , Citocinas/metabolismo , Inactivación Metabólica , Lipopolisacáridos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Cultivadas
2.
iScience ; 26(2): 105940, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36718363

RESUMEN

Malaria eradication requires the development of new drugs to combat drug-resistant parasites. We identified bisbenzylisoquinoline alkaloids isolated from Cocculus hirsutus that are active against Plasmodium falciparum blood stages. Synthesis of a library of 94 hemi-synthetic derivatives allowed to identify compound 84 that kills multi-drug resistant clinical isolates in the nanomolar range (median IC50 ranging from 35 to 88 nM). Chemical optimization led to compound 125 with significantly improved preclinical properties. 125 delays the onset of parasitemia in Plasmodium berghei infected mice and inhibits P. falciparum transmission stages in vitro (culture assays), and in vivo using membrane feeding assay in the Anopheles stephensi vector. Compound 125 also impairs P. falciparum development in sporozoite-infected hepatocytes, in the low micromolar range. Finally, by chemical pull-down strategy, we characterized the parasite interactome with trilobine derivatives, identifying protein partners belonging to metabolic pathways that are not targeted by the actual antimalarial drugs or implicated in drug-resistance mechanisms.

3.
Curr Opin Microbiol ; 70: 102207, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36183663

RESUMEN

A commonly observed survival strategy in protozoan parasites is the sequential expression of clonally variant-surface antigens to avoid elimination by the host's immune response. In malaria-causing P. falciparum, the immunovariant erythrocyte-membrane protein-1 (PfEMP1) adhesin family, encoded by var genes, is responsible for both antigenic variation and cytoadherence of infected erythrocytes to the microvasculature. Until recently, the biological function of these variant genes was believed to be restricted to intraerythrocytic developmental stages. With the advent of new technologies, var gene expression has been confirmed in transmission and pre-erythrocytic stages. Here, we discuss how repurposing of var gene expression beyond chronic blood-stage infection may be critical for successful transmission.


Asunto(s)
Antígenos de Protozoos , Malaria Falciparum , Plasmodium falciparum , Humanos , Variación Antigénica , Antígenos de Protozoos/genética , Eritrocitos/parasitología , Genes Protozoarios , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
4.
Stem Cell Reports ; 17(10): 2286-2302, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36084636

RESUMEN

Liver damage and an exacerbated inflammatory response are hallmarks of Ebola virus (EBOV) infection. Little is known about the intrinsic response to infection in human hepatocytes and their contribution to inflammation. Here, we present an induced pluripotent stem cell (iPSC)-derived hepatocyte-like cell (HLC) platform to define the hepato-intrinsic response to EBOV infection. We used this platform to show robust EBOV infection, with characteristic ultrastructural changes and evidence for viral replication. Transcriptomics analysis revealed a delayed response with minimal early transcriptomic changes, followed by a general downregulation of hepatic function and upregulation of interferon signaling, providing a potential mechanism by which hepatocytes participate in disease severity and liver damage. Using RNA-fluorescence in situ hybridization (FISH), we showed that IFNB1 and CXCL10 were mainly expressed in non-infected bystander cells. We did not observe an inflammatory signature during infection. In conclusion, iPSC-HLCs are an immune competent platform to study responses to EBOV infection.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Células Madre Pluripotentes Inducidas , Ebolavirus/fisiología , Hepatocitos , Humanos , Hibridación Fluorescente in Situ , Interferones , Hígado , ARN
5.
Nat Commun ; 13(1): 4123, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840625

RESUMEN

Plasmodium vivax is the most widespread human malaria parasite. Due to the presence of extravascular reservoirs and relapsing infections from dormant liver stages, P. vivax is particularly difficult to control and eliminate. Experimental research is hampered by the inability to maintain P. vivax cultures in vitro, due to its tropism for immature red blood cells (RBCs). Here, we describe a new humanized mice model that can support efficient human erythropoiesis and maintain long-lasting multiplication of inoculated cryopreserved P. vivax parasites and their sexual differentiation, including in bone marrow. Mature gametocytes were transmitted to Anopheles mosquitoes, which led to the formation of salivary gland sporozoites. Importantly, blood-stage P. vivax parasites were maintained after the secondary transfer of fresh or frozen infected bone marrow cells to naïve chimeras. This model provides a unique tool for investigating, in vivo, the biology of intraerythrocytic P. vivax.


Asunto(s)
Anopheles , Malaria Vivax , Animales , Anopheles/parasitología , Humanos , Malaria Vivax/parasitología , Ratones , Recurrencia Local de Neoplasia , Plasmodium vivax , Esporozoítos
6.
Trends Parasitol ; 38(9): 748-757, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35672200

RESUMEN

Malaria-causing Plasmodium parasites undergo multiple phenotypic transitions as they cycle between diverse niches in the mammalian and mosquito hosts. Recent applications of single-cell technologies to Plasmodium have enabled the systematic investigation of the distinct stages across the life cycle. Most single-cell data have focused on the parasite exclusively, but a few studies have started to profile both parasite and host cells to shed light on the heterogeneity of cell states that underpin host-parasite interactions. In this opinion article, we highlight how atlasing initiatives are starting to be used to infer functional interactions between parasite and host and could be a powerful tool in drug discovery and vaccine development.


Asunto(s)
Culicidae , Malaria , Plasmodium , Animales , Culicidae/parasitología , Interacciones Huésped-Parásitos , Humanos , Estadios del Ciclo de Vida , Malaria/parasitología , Malaria/prevención & control , Mamíferos
7.
Cell Host Microbe ; 30(7): 1048-1060.e5, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35443155

RESUMEN

Malaria-causing Plasmodium vivax parasites can linger in the human liver for weeks to years and reactivate to cause recurrent blood-stage infection. Although they are an important target for malaria eradication, little is known about the molecular features of replicative and non-replicative intracellular liver-stage parasites and their host cell dependence. Here, we leverage a bioengineered human microliver platform to culture patient-derived P. vivax parasites for transcriptional profiling. Coupling enrichment strategies with bulk and single-cell analyses, we capture both parasite and host transcripts in individual hepatocytes throughout the course of infection. We define host- and state-dependent transcriptional signatures and identify unappreciated populations of replicative and non-replicative parasites that share features with sexual transmissive forms. We find that infection suppresses the transcription of key hepatocyte function genes and elicits an anti-parasite innate immune response. Our work provides a foundation for understanding host-parasite interactions and reveals insights into the biology of P. vivax dormancy and transmission.


Asunto(s)
Malaria Vivax , Malaria , Hepatocitos/parasitología , Humanos , Hígado/parasitología , Malaria/parasitología , Malaria Vivax/parasitología , Plasmodium vivax/genética
8.
Trends Parasitol ; 37(10): 853-855, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34391664

RESUMEN

Microbiota composition recently arose as a factor correlating with malaria infection. Mandal et al. showed, via cecal transplant and antibacterial treatment, that the mouse microbiota modulates parasitemia by affecting spleen germinal centers where B cells are matured. They further identified correlations between microbiota composition and malaria severity in Ugandan children.


Asunto(s)
Antimaláricos , Malaria , Microbiota , Animales , Formación de Anticuerpos , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Ratones , Parasitemia/tratamiento farmacológico
9.
Proc Natl Acad Sci U S A ; 117(3): 1678-1688, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31915293

RESUMEN

Primary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.


Asunto(s)
Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatopatías/genética , Alcaloides de Pirrolicidina/farmacología , Animales , Trasplante de Células , Quimera , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Hepatitis B , Virus de la Hepatitis B , Hepatocitos/trasplante , Proteínas de Homeodominio/genética , Humanos , Hidrolasas/genética , Subunidad gamma Común de Receptores de Interleucina/genética , Hígado/patología , Hepatopatías/patología , Malaria , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Plasmodium falciparum
10.
JCI Insight ; 4(24)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31852843

RESUMEN

Despite an unprecedented 2 decades of success, the combat against malaria - the mosquito-transmitted disease caused by Plasmodium parasites - is no longer progressing. Efforts toward eradication are threatened by the lack of an effective vaccine and a rise in antiparasite drug resistance. Alternative approaches are urgently needed. Repurposing of available, approved drugs with distinct modes of action are being considered as viable and immediate adjuncts to standard antimicrobial treatment. Such strategies may be well suited to the obligatory and clinically silent first phase of Plasmodium infection, where massive parasite replication occurs within hepatocytes in the liver. Here, we report that the widely used antidiabetic drug, metformin, impairs parasite liver stage development of both rodent-infecting Plasmodium berghei and human-infecting P. falciparum parasites. Prophylactic treatment with metformin curtails parasite intracellular growth in vitro. An additional effect was observed in mice with a decrease in the numbers of infected hepatocytes. Moreover, metformin provided in combination with conventional liver- or blood-acting antimalarial drugs further reduced the total burden of P. berghei infection and substantially lessened disease severity in mice. Together, our findings indicate that repurposing of metformin in a prophylactic regimen could be considered for malaria chemoprevention.


Asunto(s)
Antimaláricos/farmacología , Malaria/prevención & control , Metformina/farmacología , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/uso terapéutico , Células Cultivadas , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Quimioterapia Combinada/métodos , Hepatocitos , Humanos , Concentración 50 Inhibidora , Hígado/citología , Hígado/efectos de los fármacos , Hígado/parasitología , Malaria/sangre , Malaria/tratamiento farmacológico , Malaria/parasitología , Masculino , Mefloquina/farmacología , Mefloquina/uso terapéutico , Metformina/uso terapéutico , Ratones , Carga de Parásitos , Pruebas de Sensibilidad Parasitaria , Plasmodium berghei/aislamiento & purificación , Plasmodium falciparum/aislamiento & purificación , Primaquina/farmacología , Primaquina/uso terapéutico , Cultivo Primario de Células
11.
Cell ; 177(2): 315-325.e14, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929905

RESUMEN

Transmission of malaria parasites occurs when a female Anopheles mosquito feeds on an infected host to acquire nutrients for egg development. How parasites are affected by oogenetic processes, principally orchestrated by the steroid hormone 20-hydroxyecdysone (20E), remains largely unknown. Here we show that Plasmodium falciparum development is intimately but not competitively linked to processes shaping Anopheles gambiae reproduction. We unveil a 20E-mediated positive correlation between egg and oocyst numbers; impairing oogenesis by multiple 20E manipulations decreases parasite intensities. These manipulations, however, accelerate Plasmodium growth rates, allowing sporozoites to become infectious sooner. Parasites exploit mosquito lipids for faster growth, but they do so without further affecting egg development. These results suggest that P. falciparum has adopted a non-competitive evolutionary strategy of resource exploitation to optimize transmission while minimizing fitness costs to its mosquito vector. Our findings have profound implications for currently proposed control strategies aimed at suppressing mosquito populations.


Asunto(s)
Ecdisterona/metabolismo , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/parasitología , Animales , Anopheles/parasitología , Culicidae , Ecdisterona/fisiología , Femenino , Células HEK293 , Humanos , Insectos Vectores , Malaria/parasitología , Ratones , Mosquitos Vectores , Células 3T3 NIH , Oogénesis/fisiología , Plasmodium/metabolismo , Plasmodium falciparum , Esporozoítos , Esteroides/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(20): 9979-9988, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31028144

RESUMEN

Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αß-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αß-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.


Asunto(s)
Linfocitos Intraepiteliales/fisiología , Hígado/inmunología , Malaria Cerebral/inmunología , Plasmodium berghei/patogenicidad , Esporozoítos/patogenicidad , Animales , Hígado/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Esporozoítos/crecimiento & desarrollo
13.
Cell Metab ; 29(3): 727-735.e3, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840913

RESUMEN

The liver plays a central role in metabolism; however, xenobiotic metabolism variations between human hepatocytes and those in model organisms create challenges in establishing functional test beds to detect the potential drug toxicity and efficacy of candidate small molecules. In the emerging areas of RNA interference, viral gene therapy, and genome editing, more robust, long-lasting, and predictive human liver models may accelerate progress. Here, we apply a new modality to a previously established, functionally stable, multi-well bioengineered microliver-fabricated from primary human hepatocytes and supportive stromal cells-in order to advance both small molecule and nucleic acid therapeutic pipelines. Specifically, we achieve robust and durable gene silencing in vitro to tune the human metabolism of small molecules, and demonstrate its capacity to query the potential efficacy and/or toxicity of candidate therapeutics. Additionally, we apply this engineered platform to test siRNAs designed to target hepatocytes and impact human liver genetic and infectious diseases.


Asunto(s)
Descubrimiento de Drogas/métodos , Hepatocitos/metabolismo , Hígado/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Células del Estroma/metabolismo , Células 3T3 , Animales , Hepatocitos/citología , Humanos , Hígado/citología , Ratones , Plasmodium falciparum , Células del Estroma/citología
14.
Gastroenterology ; 156(6): 1788-1804.e13, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30641053

RESUMEN

BACKGROUND & AIMS: Patients with cirrhosis are at high risk for hepatocellular carcinoma (HCC) and often have increased serum levels of estrogen. It is not clear how estrogen promotes hepatic growth. We investigated the effects of estrogen on hepatocyte proliferation during zebrafish development, liver regeneration, and carcinogenesis. We also studied human hepatocytes and liver tissues. METHODS: Zebrafish were exposed to selective modifiers of estrogen signaling at larval and adult stages. Liver growth was assessed by gene expression, fluorescent imaging, and histologic analyses. We monitored liver regeneration after hepatocyte ablation and HCC development after administration of chemical carcinogens (dimethylbenzanthrazene). Proliferation of human hepatocytes was measured in a coculture system. We measured levels of G-protein-coupled estrogen receptor (GPER1) in HCC and nontumor liver tissues from 68 patients by immunohistochemistry. RESULTS: Exposure to 17ß-estradiol (E2) increased proliferation of hepatocytes and liver volume and mass in larval and adult zebrafish. Chemical genetic and epistasis experiments showed that GPER1 mediates the effects of E2 via the phosphoinositide 3-kinase-protein kinase B-mechanistic target of rapamycin pathway: gper1-knockout and mtor-knockout zebrafish did not increase liver growth in response to E2. HCC samples from patients had increased levels of GPER1 compared with nontumor tissue samples; estrogen promoted proliferation of human primary hepatocytes. Estrogen accelerated hepatocarcinogenesis specifically in male zebrafish. Chemical inhibition or genetic loss of GPER1 significantly reduced tumor development in the zebrafish. CONCLUSIONS: In an analysis of zebrafish and human liver cells and tissues, we found GPER1 to be a hepatic estrogen sensor that regulates liver growth during development, regeneration, and tumorigenesis. Inhibitors of GPER1 might be developed for liver cancer prevention or treatment. TRANSCRIPT PROFILING: The accession number in the Gene Expression Omnibus is GSE92544.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Estradiol/farmacología , Estrógenos/farmacología , Neoplasias Hepáticas/metabolismo , Hígado/crecimiento & desarrollo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Pez Cebra/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animales , Carcinogénesis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Proliferación Celular/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Hepatocitos , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/patología , Regeneración Hepática , Masculino , Tamaño de los Órganos/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Receptores Acoplados a Proteínas G/genética , Factores Sexuales , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Carga Tumoral/efectos de los fármacos , Pez Cebra , Proteínas de Pez Cebra/genética
15.
Cell Host Microbe ; 23(3): 395-406.e4, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29478773

RESUMEN

The unique relapsing nature of Plasmodium vivax infection is a major barrier to malaria eradication. Upon infection, dormant liver-stage forms, hypnozoites, linger for weeks to months and then relapse to cause recurrent blood-stage infection. Very little is known about hypnozoite biology; definitive biomarkers are lacking and in vitro platforms that support phenotypic studies are needed. Here, we recapitulate the entire liver stage of P. vivax in vitro, using a multiwell format that incorporates micropatterned primary human hepatocyte co-cultures (MPCCs). MPCCs feature key aspects of P. vivax biology, including establishment of persistent small forms and growing schizonts, merosome release, and subsequent infection of reticulocytes. We find that the small forms exhibit previously described hallmarks of hypnozoites, and we pilot MPCCs as a tool for testing candidate anti-hypnozoite drugs. Finally, we employ a hybrid capture strategy and RNA sequencing to describe the hypnozoite transcriptome and gain insight into its biology.


Asunto(s)
Antimaláricos/farmacología , Técnicas de Cultivo de Célula/métodos , Pruebas de Sensibilidad Parasitaria/métodos , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/crecimiento & desarrollo , Plasmodium vivax/metabolismo , Transcriptoma , Animales , Biomarcadores , Línea Celular/parasitología , Técnicas de Cocultivo , Fibroblastos , Hepatocitos/parasitología , Humanos , Técnicas In Vitro , Cinética , Hígado/parasitología , Malaria Vivax/tratamiento farmacológico , Ratones , Análisis de Secuencia de ARN , Esporozoítos/efectos de los fármacos , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismo
16.
Cell Mol Gastroenterol Hepatol ; 5(2): 131-144, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29322086

RESUMEN

Engineered liver systems come in a variety of platform models, from 2-dimensional cocultures of primary human hepatocytes and stem cell-derived progeny, to 3-dimensional organoids and humanized mice. Because of the species-specificity of many human hepatropic pathogens, these engineered systems have been essential tools for biologic discovery and therapeutic agent development in the context of liver-dependent infectious diseases. Although improvement of existing models is always beneficial, and the addition of a robust immune component is a particular need, at present, considerable progress has been made using this combination of research platforms. We highlight advances in the study of hepatitis B and C viruses and malaria-causing Plasmodium falciparum and Plasmodium vivax parasites, and underscore the importance of pairing the most appropriate model system and readout modality with the particular experimental question at hand, without always requiring a platform that recapitulates human physiology in its entirety.

17.
Nat Microbiol ; 3(1): 17-25, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29109477

RESUMEN

The causative agent of malaria, Plasmodium, replicates inside a membrane-bound parasitophorous vacuole (PV), which shields this intracellular parasite from the cytosol of the host cell 1 . One common threat for intracellular pathogens is the homeostatic process of autophagy, through which cells capture unwanted intracellular material for lysosomal degradation 2 . During the liver stage of a malaria infection, Plasmodium parasites are targeted by the autophagy machinery of the host cell, and the PV membrane (PVM) becomes decorated with several autophagy markers, including LC3 (microtubule-associated protein 1 light chain 3) 3,4 . Here we show that Plasmodium berghei parasites infecting hepatic cells rely on the PVM transmembrane protein UIS3 to avoid elimination by host-cell-mediated autophagy. We found that UIS3 binds host LC3 through a non-canonical interaction with a specialized surface on LC3 where host proteins with essential functions during autophagy also bind. UIS3 acts as a bona fide autophagy inhibitor by competing with host LC3-interacting proteins for LC3 binding. Our work identifies UIS3, one of the most promising candidates for a genetically attenuated vaccine against malaria 5 , as a unique and potent mediator of autophagy evasion in Plasmodium. We propose that the protein-protein interaction between UIS3 and host LC3 represents a target for antimalarial drug development.


Asunto(s)
Autofagia/fisiología , Hepatocitos/patología , Malaria/patología , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Plasmodium berghei/genética , Animales , Autofagosomas/metabolismo , Línea Celular , Células HEK293 , Células Hep G2 , Hepatocitos/parasitología , Hepatocitos/ultraestructura , Interacciones Huésped-Patógeno , Humanos , Malaria/fisiopatología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidad , Unión Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Vacuolas/metabolismo
18.
Nature ; 547(7662): 213-216, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28678779

RESUMEN

The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence.


Asunto(s)
Regulación de la Expresión Génica , Malaria/parasitología , Parásitos/metabolismo , Parásitos/patogenicidad , Fosfotransferasas/metabolismo , Plasmodium/metabolismo , Plasmodium/patogenicidad , Animales , Restricción Calórica , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Complementación Genética , Glucosa/metabolismo , Glucosa/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Parasitemia/sangre , Parasitemia/genética , Parasitemia/metabolismo , Parasitemia/parasitología , Parásitos/genética , Parásitos/crecimiento & desarrollo , Fosfotransferasas/deficiencia , Fosfotransferasas/genética , Plasmodium/genética , Plasmodium/crecimiento & desarrollo , Ratas , Transcriptoma/efectos de los fármacos , Virulencia/efectos de los fármacos
19.
Cell Microbiol ; 19(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27404888

RESUMEN

Intracellular pathogens have evolved mechanisms to ensure their survival and development inside their host cells. Here, we show that glucose is a pivotal modulator of hepatic infection by the rodent malaria parasite Plasmodium berghei and that glucose uptake via the GLUT1 transporter is specifically enhanced in P. berghei-infected cells. We further show that ATP levels of cells containing developing parasites are decreased, which is known to enhance membrane GLUT1 activity. In addition, GLUT1 molecules are translocated to the membrane of the hepatic cell, increasing glucose uptake at later stages of infection. Chemical inhibition of GLUT1 activity leads to a decrease in glucose uptake and the consequent impairment of hepatic infection, both in vitro and in vivo. Our results reveal that changes in GLUT1 conformation and cellular localization seem to be part of an adaptive host response to maintain adequate cellular nutrition and energy levels, ensuring host cell survival and supporting P. berghei hepatic development.


Asunto(s)
Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Interacciones Huésped-Patógeno , Hígado/patología , Hígado/parasitología , Malaria/patología , Plasmodium berghei/fisiología , Adenosina Trifosfato/análisis , Animales , Línea Celular , Citosol/química , Humanos , Inmunohistoquímica , Ratones Endogámicos C57BL , Plasmodium berghei/crecimiento & desarrollo
20.
Cell Rep ; 16(10): 2539-2545, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27568570

RESUMEN

Manipulation of the master regulator of energy homeostasis AMP-activated protein kinase (AMPK) activity is a strategy used by many intracellular pathogens for successful replication. Infection by most pathogens leads to an activation of host AMPK activity due to the energetic demands placed on the infected cell. Here, we demonstrate that the opposite is observed in cells infected with rodent malaria parasites. Indeed, AMPK activity upon the infection of hepatic cells is suppressed and dispensable for successful infection. By contrast, an overactive AMPK is deleterious to intracellular growth and replication of different Plasmodium spp., including the human malaria parasite, P. falciparum. The negative impact of host AMPK activity on infection was further confirmed in mice under conditions that activate its function. Overall, this work establishes the role of host AMPK signaling as a suppressive pathway of Plasmodium hepatic infection and as a potential target for host-based antimalarial interventions.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Interacciones Huésped-Parásitos , Hígado/parasitología , Malaria/enzimología , Malaria/parasitología , Animales , Línea Celular Tumoral , Activación Enzimática , Humanos , Estadios del Ciclo de Vida , Hígado/patología , Malaria/patología , Masculino , Ratones Endogámicos C57BL , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...