Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 409: 131252, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127359

RESUMEN

Anaerobic digestion (AD) has the potential to catalyse the shift from a linear to a circular economy. However, effective treatment and management of both solid (DSF) and liquid (DLF) digestate fraction treatment and management require adopting sustainable technologies to recover valuable by-products like energy, biofuels, biochar, and nutrients. This study reviews state-of-the-art advanced technologies for DSF and DLF treatment and valorisation, using life cycle assessment (LCA) and techno-economic analysis (TEA) in integrated digestate management (IDM). Key findings highlight these technologies' potential in mitigating environmental impacts from digestate management, but there's a need to improve process efficiency, especially at larger scales. Future research should prioritize cost-effective and eco-friendly IDM technologies. This review emphasizes how LCA and TEA can guide decision-making and promote sustainable agricultural practices. Ultimately, sustainable IDM technologies can boost resource recovery and advance circular economy principles, enhancing the environmental and economic sustainability of AD processes.

2.
J Environ Manage ; 359: 121109, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723500

RESUMEN

The impact of climate change on water availability and quality has affected agricultural irrigation. The use of treated wastewater can alleviate water in agriculture. Nevertheless, it is imperative to ensure proper treatment of wastewater before reuse, in compliance with current regulations of this practice. In decentralized agricultural scenarios, the lack of adequate treatment facilities poses a challenge in providing treated wastewater for irrigation. Hence, there is a critical need to develop and implement innovative, feasible, and sustainable treatment solutions to secure the use of this alternative water source. This study proposes the integration of intensive treatment solutions and natural treatment systems, specifically, the combination of up-flow anaerobic sludge blanket reactor (UASB), anaerobic membrane bioreactor (AnMBR), constructed wetlands (CWs), and ultraviolet (UV) disinfection. For this purpose, a novel demo-scale plant was designed, constructed and implemented to test wastewater treatment and evaluate the capability of the proposed system to provide an effluent with a quality in compliance with the current European wastewater reuse regulatory framework. In addition, carbon-sequestration and energy analyses were conducted to assess the sustainability of the proposed treatment approach. This research confirmed that UASB rector can be employed for biogas production (2.5 L h-1) and energy recovery from organic matter degradation, but its effluent requires further treatment steps to be reused in agricultural irrigation. The AnMBR effluent complied with class A standards for E. coli, boasting a concentration of 0 CFU 100 mL-1, and nearly negligible TSS levels. However, further reduction of BOD5 (35 mg L-1) is required to reach water quality class A. CWs efficiently produced effluent with BOD5 below 10 mg L-1 and TSS close to 0 mg L-1, making it suitable for water reuse and meeting class A standards. Furthermore, CWs demonstrated significantly higher energy efficiency compared to intensive treatment systems. Nonetheless, the inclusion of a UV disinfection unit after CWs was required to attain water class B standards.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Agricultura , Carbono
3.
Microorganisms ; 12(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38792757

RESUMEN

Candida auris has been identified by the World Health Organization (WHO) as a critical priority pathogen on its latest list of fungi. C. auris infections are reported in the bloodstream and less commonly in the cerebrospinal fluid and abdomen, with mortality rates that range between 30% and 72%. However, no large-scale epidemiology studies have been reported until now. The diagnosis of C. auris infections can be challenging, particularly when employing conventional techniques. This can impede the early detection of outbreaks and the implementation of appropriate control measures. The yeast can easily spread between patients and in healthcare settings through contaminated environments or equipment, where it can survive for extended periods. Therefore, it would be desirable to screen patients for C. auris colonisation. This would allow facilities to identify patients with the disease and take appropriate prevention and control measures. It is frequently unsusceptible to drugs, with varying patterns of resistance observed among clades and geographical regions. This review provides updates on C. auris, including epidemiology, clinical characteristics, genomic analysis, evolution, colonisation, infection, identification, resistance profiles, therapeutic options, prevention, and control.

5.
Eur J Microbiol Immunol (Bp) ; 14(2): 86-96, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38498078

RESUMEN

Schistosomiasis is a neglected tropical disease that is prevalent in low- and middle-income countries. There are five human pathogenic species, of which Schistosoma haematobium, Schistosoma mansoni and Schistosoma japonicum are the most prevalent worldwide and cause the greatest burden of disease in terms of mortality and morbidity. In addition, hybrid schistosomes have been identified through molecular analysis. Human infection occurs when cercariae, the larval form of the parasite, penetrate the skin of people while bathing in contaminated waters such as lakes and rivers. Schistosomiasis can cause both urogenital and intestinal symptoms. Urogenital symptoms include haematuria, bladder fibrosis, kidney damage, and an increased risk of bladder cancer. Intestinal symptoms may include abdominal pain, sometimes accompanied by diarrhoea and blood in the stool. Schistosomiasis affects more than 250 million people and causes approximately 70 million Disability-Adjusted Life Years (DALYs), mainly in Africa, South America, and Asia. To control infection, it is essential to establish sensitive and specific diagnostic tests for epidemiological surveillance and morbidity reduction. This review provides an overview of schistosomiasis, with a focus on available diagnostic tools for Schistosoma spp. Current molecular detection methods and progress in the development of new diagnostics for schistosomiasis infection are also discussed.

6.
Antibiotics (Basel) ; 13(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38391540

RESUMEN

Urinary tract infections (UTIs) are prevalent bacterial infections in both community and healthcare settings. They account for approximately 40% of all bacterial infections and require around 15% of all antibiotic prescriptions. Although antibiotics have traditionally been used to treat UTIs for several decades, the significant increase in antibiotic resistance in recent years has made many previously effective treatments ineffective. Biofilm on medical equipment in healthcare settings creates a reservoir of pathogens that can easily be transmitted to patients. Urinary catheter infections are frequently observed in hospitals and are caused by microbes that form a biofilm after a catheter is inserted into the bladder. Managing infections caused by biofilms is challenging due to the emergence of antibiotic resistance. Biofilms enable pathogens to evade the host's innate immune defences, resulting in long-term persistence. The incidence of sepsis caused by UTIs that have spread to the bloodstream is increasing, and drug-resistant infections may be even more prevalent. While the availability of upcoming tests to identify the bacterial cause of infection and its resistance spectrum is critical, it alone will not solve the problem; innovative treatment approaches are also needed. This review analyses the main characteristics of biofilm formation and drug resistance in recurrent uropathogen-induced UTIs. The importance of innovative and alternative therapies for combatting biofilm-caused UTI is emphasised.

7.
Environ Res ; 247: 118275, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246295

RESUMEN

The study investigated the dissipation ability of a vegetated free water surface (FWS) constructed wetland (CW) in treating pesticides-contaminated agricultural runoff/drainage water in a rural area belonging to Bologna province (Italy). The experiment simulated a 0.1% pesticide agricultural water runoff/drainage event from a 12.5-ha farm by dissolving acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine in 1000 L of water and pumping it into the CW. Water and sediment samples from the CW were collected for 4 months at different time intervals to determine pesticide concentrations by multiresidue extraction and chromatography-mass spectrometry analyses. In parallel, no active compounds were detected in the CW sediments during the experimental period. Pesticides dissipation in the wetland water compartment was modeled according to best data practices by fitting the data to Single First Order (SFO), First Order Multi-Compartment (FOMC) and Double First Order in Parallel (DFOP) kinetic models. SFO (except for metalaxyl), FOMC and DFOP kinetic models adequately predicted the dissipation for the four investigated molecules, with the DFOP kinetic model that better fitted the observed data. The modeled distribution of each pesticide between biomass and water in the CW highly correlated with environmental indexes as Kow and bioconcentration factor. Computed DT50 by DFOP model were 2.169, 8.019, 1.551 and 2.047 days for acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine, respectively. Although the exact degradation mechanisms of each pesticide require further study, the FWS CW was found to be effective in treating pesticides-contaminated agricultural runoff/drainage water within an acceptable time. Therefore, this technology proved to be a valuable tool for mitigating pesticides runoff occurring after intense rain events.


Asunto(s)
Acetamidas , Alanina/análogos & derivados , Neonicotinoides , Plaguicidas , Triazinas , Contaminantes Químicos del Agua , Humedales , Plaguicidas/análisis , Agricultura/métodos , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA