Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853721

RESUMEN

The reactivity of 4-hydroxy-2H-chromene-2-thione is investigated with aryl aldehydes and 5,5-dimethylcylohexane-1,3-dione (dimedone) in the presence of 20 mol% L-proline in toluene at 90 °C. Instead of the expected linear product with a sulphur atom in the ring provided by 4-hydroxydithiocoumarin or an angular product obtained from 4-hydroxycoumarin, the hitherto unreported products, 12-aryl substituted chromeno[2,3-b]chromenes (4), were obtained in good to excellent yields. The reaction proceeds through a three-component reaction via Knoevenagel condensation between dimedone with an aromatic aldehyde followed by Michael addition with 4-hydroxy-2H-chromene-2-thione. In addition, a molecular docking study of all the derivatives was performed and among them, four compounds exhibited anti-proliferative activity and elevated ROS generation in breast cancer (MCF7) cell lines.

2.
Angew Chem Int Ed Engl ; : e202406616, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771295

RESUMEN

We have synthesized three new hybrid layered double perovskites (HLDPs) with general formula (R'/R'')4/2M(III)M(I)Cl8; where R' = C3H7NH3 (i.e. 3N) and R'' = NH3C4H8NH3 (i.e. 4N4); M(III) = In3+ or Ru3+; M(I) = Cu+ by simple solution-based acid precipitation method. The structural analysis reveals that (4N4)2CuInCl8 and (4N4)2CuRuCl8 adopt the layered Dion Jacobson (DJ) structure, whereas (3N)4CuInCl8 exhibits layered Ruddlesden Popper (RP) structure. Three compounds show temperature-dependent structural phase transition where change in the staking of inorganic layer, extent of octahedral tilting and reorientation of organic spacers with temperature have noticed. We have achieved ultralow lattice thermal conductivity (kL) in the HLDPs in the 2 to 300 K range, originating from the distorted crystal structures and soft lattice. The RP-HLDP compound, (3N)4CuInCl8, demonstrates anisotropy in kL while measured parallel and perpendicular to layer stacking, showcasing ultralow kL of 0.15 Wm-1K-1 at room temperature, which is one of the lowest values obtained among Pb-free metal halide perovskite. The observed ultralow kL in three new HLDPs is attributed to significant lattice anharmonicity arising from the chemical bonding heterogeneity within the complex crystal structure, coupled with the presence of low-energy localized optical phonon modes that suppress heat-carrying acoustic phonons.

3.
Chem Sci ; 15(20): 7374-7393, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784758

RESUMEN

Two-dimensional organic-inorganic halide perovskites have emerged as promising candidates for a multitude of optoelectronic technologies, owing to their versatile structure and electronic properties. The optical and electronic properties are harmoniously integrated with both the inorganic metal halide octahedral slab, and the organic spacer layer. The inorganic octahedral layers can also assemble into periodically stacked nanoplatelets, which are interconnected by the organic ammonium cation, resulting in the formation of a superlattice or superstructure. In this perspective, we explore the structural, electronic, and optical properties of lead-free hybrid halides, and the layered halide perovskite single crystals and nanostructures, expanding our understanding of the diverse applications enabled by these versatile structures. The optical properties of the layered halide perovskite single crystals and superlattices are a function of the organic spacer layer thickness, the metal center with either divalent or a combination of monovalent and trivalent cations, and the halide composition. The distinct absorption and emission features are guided by the structural deformation, electron-phonon coupling, and the polaronic effect. Among the diverse optoelectronic possibilities, we have focused on the photodetection capability of layered halide perovskite single crystals, and elucidated the descriptors such as excitonic band gap, effective mass, carrier mobility, Rashba splitting, and the spin texture that decides the direct component of the optical transitions.

4.
J Org Chem ; 89(9): 6274-6280, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38642061

RESUMEN

Herein, a one-pot desulfonylative protocol enabled by copper(II)/zinc(II) salts to access pyrrolo[2,3-b]quinolines in good to excellent yields from 2-carbonylanilines and ynamide-derived buta-1,3-diynes has been reported. Significantly, various 2-carbonylanilines carrying reactive functional groups are well tolerated. Moreover, a gram-scale synthesis and synthetic application highlight the practical utility of the current protocol. Notably, the fluorescence properties of pyrrolo[2,3-b]quinolines have been recorded, and their potential use as a fluorescent probe in the imaging of live cells has been demonstrated.

5.
Org Biomol Chem ; 22(12): 2339-2358, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38444342

RESUMEN

The synthesis of quinoline derivatives through multicomponent reactions (MCRs) has emerged as an efficient and versatile strategy in organic synthesis. MCRs offer the advantage of constructing complex molecular architectures in a single step, utilising multiple starting materials in a convergent manner. This review provides an overview of recent advancements in the field of quinoline synthesis via MCRs. Various MCRs, such as the Povarov reaction, the Gewald reaction, and the Ugi reaction have been successfully employed for the synthesis of diverse quinoline scaffolds. These methodologies not only showcase high atom economy but also allow the incorporation of structural diversity into the final products. The versatility of MCRs enables the introduction of functional groups and substitution patterns tailored to specific applications. This review highlights the significance of quinoline derivatives in medicinal chemistry, materials science, and other interdisciplinary areas. The continuous innovation and development of novel MCR-based approaches for quinoline synthesis hold great promise for the rapid and efficient generation of valuable compounds with a wide range of biological and physicochemical properties.

6.
J Am Chem Soc ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906676

RESUMEN

The organic spacer molecule is known to regulate the optoelectronic properties of two-dimensional (2D) perovskites. We show that the spacer layer thickness determines the nature of optical transitions, direct or indirect, by controlling the structural properties of the inorganic layer. The spin-orbit interactions lead to different electron spin orientations for the states associated with the conduction band minimum (CBM) and the valence band maximum (VBM). This leads to a direct as well as an indirect component of the transitions, despite them being direct in momentum space. The shorter chains have a larger direct component, leading to a better optoelectronic performance. The mixed halide Sn2+ Dion-Jacobson (DJ) perovskite with the shortest 4-C diammonium spacer outshines the photodetection parameters of those having longer (6-C and 8-C) spacers and the corresponding Ruddlesden-Popper (RP) phases. The DJ system with a 4-C spacer and equimolar Br/I embodies an unprecedentedly high responsivity of 78.1 A W-1 under 3 V potential bias at 485 nm wavelength, among the DJ perovskites. Without any potential bias, this phase manifests the self-powered photodetection parameters of 0.085 A W-1 and 9.9 × 1010 jones. The unusual role of electron spin texture in these high-performance photodetectors of the lead-free DJ perovskites provides an avenue to exploit the information coded in spins for semiconductor devices without any ferromagnetic supplement or magnetic field.

7.
Chem Asian J ; 18(22): e202300654, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37818755

RESUMEN

Two Zn(II)-based compounds, [Zn2 L1 (OAc)3 (MeOH)] (1) and [Zn2 L2 (OAc)3 ]n (2), have been reported where HL1 is (E)-4-bromo-2-methoxy-6-(((2-morpholino ethyl)imino) methyl)phenol and HL2 is (E)-4-bromo-2-methoxy-6-(((2-(piperazine-1-yle)ethyl)imino)methyl) phenol. Single-crystal X-ray diffraction (SCXRD) analysis unveils vivid change in structural arrangements and dimensionality from 1 to 2 due to change in coordinated atom from oxygen to nitrogen of the ligands. SCXRD study shows that compound 1 is dinuclear but compound 2 has a 1-dimensional polymeric structure having helical chain. Structural diversity greatly influences the catalytic activity. Compound 1 acts as excellent catalyst for conversion of 3, 5-di-tert-butyl catechol (3, 5-DTBC) to 3, 5-di-tert-butylbenzoquinone (3, 5-DTBQ) with the turnover number (kcat ) value of 34.94 sec-1 . Further, compound 1 reveals phosphatase like activity for conversion of disodium salt of (4-nitrophenyl)-phosphate hexahydrate to p-nitrophenolate with the kcat value of 24.64 sec-1 . Interestingly, compound 2 does not show any catalytic activity. To correlate this distinctly different catalytic behavior of two compounds, DFT calculation was carried out. The calculation reveals that detachment of coordinated methanol from coordination sphere of zinc in compound 1 is energetically favourable which creates room for substrate binding, resulting in high catalytic activity. By contrast, in compound 2, detachment of piperazine or Zn-O of -COOH group is energetically unfavourable, resulting in no catalytic activity.

8.
Chem Sci ; 14(36): 9770-9779, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736622

RESUMEN

New perovskite phases having diverse optoelectronic properties are the need of the hour. We present five variations of R2AgM(iii)X8, where R = NH3C4H8NH3 (4N4) or NH3C6H12NH3 (6N6); M(iii) = Bi3+ or Sb3+; and X = Br- or I-, by tuning the composition of (4N4)2AgBiBr8, a structurally rich hybrid layered double perovskite (HLDP). (4N4)2AgBiBr8, (4N4)2AgSbBr8, and (6N6)2AgBiBr8 crystallize as Dion-Jacobson (DJ) HLDPs, whereas 1D (6N6)SbBr5, (4N4)-BiI and (4N4)-SbI have trans-connected chains by corner-shared octahedra. Ag+ stays out of the 1D lattice either when SbBr63- distortion is high or if Ag+ needs to octahedrally coordinate with I-. Band structure calculations show a direct bandgap for all the bromide phases except (6N6)2AgBiBr8. (4N4)2AgBiBr8 with lower octahedral tilt shows a maximum UV responsivity of 18.8 ± 0.2 A W-1 and external quantum efficiency (EQE) of 6360 ± 58%, at 2.5 V. When self-powered (0 V), (4N4)-SbI has the best responsivity of 11.7 ± 0.2 mA W-1 under 485 nm visible light, with fast photoresponse ≤100 ms.

9.
Nucleic Acids Res ; 51(W1): W484-W492, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37140037

RESUMEN

Proksee (https://proksee.ca) provides users with a powerful, easy-to-use, and feature-rich system for assembling, annotating, analysing, and visualizing bacterial genomes. Proksee accepts Illumina sequence reads as compressed FASTQ files or pre-assembled contigs in raw, FASTA, or GenBank format. Alternatively, users can supply a GenBank accession or a previously generated Proksee map in JSON format. Proksee then performs assembly (for raw sequence data), generates a graphical map, and provides an interface for customizing the map and launching further analysis jobs. Notable features of Proksee include unique and informative assembly metrics provided via a custom reference database of assemblies; a deeply integrated high-performance genome browser for viewing and comparing analysis results at individual base resolution (developed specifically for Proksee); an ever-growing list of embedded analysis tools whose results can be seamlessly added to the map or searched and explored in other formats; and the option to export graphical maps, analysis results, and log files for data sharing and research reproducibility. All these features are provided via a carefully designed multi-server cloud-based system that can easily scale to meet user demand and that ensures the web server is robust and responsive.


Asunto(s)
Genoma Bacteriano , Programas Informáticos , Reproducibilidad de los Resultados , Bases de Datos de Ácidos Nucleicos , Internet
10.
J Phys Chem Lett ; 13(39): 9103-9113, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36154102

RESUMEN

Semiconductor nanostructures with near-unity photoluminescence quantum yields (PLQYs) are imperative for light-emitting diodes and display devices. A PLQY of 99.7 ± 0.3% has been obtained by stabilizing 91% Sn2+ in the Dion-Jacobson (8N8)SnBr4 (8N8-DJ) perovskite with 1,8-diaminooctane (8N8) spacer. The PLQY is favored by a longer spacer molecule and out-of-plane octahedral tilting. The PLQY shows one-month ambient stability under high relative humidity (RH) and temperature. With n-octylamine (8N) spacer, Ruddlesden-Popper (8N)2SnBr4 (8N-RP) also shows PLQY of 91.7 ± 0.6%, but it has poor ambient stability. The 5-300 K PL experiments decipher the self-trapped excitons (STEs) where the self-trapping depth is 25.6 ± 0.4 meV below the conduction band because of strong carrier-phonon coupling. The microsecond long-lived STE dominates over the band edge (BE) peaks at lower excitation wavelengths and higher temperatures. The higher PLQY and stability of 8N8-DJ are due to the stronger interaction between SnBr64- octahedra and 8N8 spacer, leading to a rigid structure.

11.
ACS Appl Mater Interfaces ; 14(33): 37982-37989, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35947785

RESUMEN

Herein, we describe the synthesis, characterization, and optoelectronic investigation of a stable 4nπ dihydrotetraazapentacene derivative. The neutral dihydrotetraazapentacene contains a 24π-conjugated N-heteroacene core with two phenyl pendants appended thereof. The exceptional stability of this formally antiaromatic π-system is attributed to the fused dihydropyrazine ring, which has ethenamine (enamine) conjugations, and hence, the π-electrons delocalize over the nearly planar azapentacene core to endow with a global aromatic characteristic. The embedded dihydropyrazine also offers an additional Clar's sextet with enhanced aromaticity. The present dihydrotetraazapentacene can be considered as a multitasking N-heteroacene, which showed photoresponsive nature under visible light illumination, acidochromism in solution, and p-type charge transport with an appreciable field-effect hole mobility of 0.02 cm2 V-1 s-1 and a bulk p-type mobility of 0.98 × 10-4 cm2 V-1 s-1 in the space charge-limited regime of operation measured in the hole-only device. Nucleus-independent chemical shift calculation, anisotropy of the induced current density plot, and anisotropic mobility calculation were performed to support the experimental findings.

12.
Nanotechnology ; 33(41)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35793644

RESUMEN

Lead-free layered double perovskite nanocrystals (NCs) with tunable visible range emission, high carrier mobility and low trap density are the need of the hour to make them applicable for optoelectronic and photovoltaic devices. Introduction of Cu2+in the high band gap Cs3Sb2Cl9lattice transforms it to the monoclinic Cs4CuSb2Cl12(CCSC) NCs having a direct band gap of 1.96 eV. The replacement of 50% Cl-by I-ions generates <5 nm Cs4CuSb2Cl6I6(C6I6) monodispersed NCs with an unchanged crystal system but with further lowering of the band gap to 1.92 eV. Thep-type C6I6 NCs exhibit emission spectra, lower trap density, appreciable hole mobility and most importantly a lower exciton binding energy of only 50.8 ± 1.3 meV. The temperature dependent photoluminescence (PL) spectra of the C6I6 NCs show a decrease in non-radiative recombination from 300 K down to 78 K. When applied as the photoactive layer in out-of-plane photodetector devices, C6I6 NC devices exhibit an appreciable responsivity of 0.67 A W-1at 5 V, detectivity of 4.55 × 108Jones (2.5 V), and fast photoresponse with rise and fall time of 126 and 94 ms, respectively. On the other hand, higher I-substitution in Cs4CuSb2Cl2I10NCs (C2I10) degrades the lattice into a mixture of monoclinic and trigonal crystal phases, which also lowers the device performance.

13.
Neuroophthalmology ; 46(2): 99-103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273413

RESUMEN

Scrub typhus, an acute febrile infectious disease prevalent in the "Tsutsugamushi Triangle", is a mite-born rickettsial zoonosis, caused by Orientia tsutsugamushi. Although the clinical presentation is protean, it rarely causes abducens nerve palsy. We report a 14-year-old previously healthy Indian girl who presented with a recent onset right abducens nerve palsy and headache, but without fever and without the classic dermatological manifestation ("eschar") of the disease. After exclusion of common infectious, autoimmune, and neoplastic causes, she was finally diagnosed with scrub typhus associated with an abducens nerve palsy, which responded to doxycycline therapy.

14.
ACS Appl Mater Interfaces ; 13(36): 43104-43114, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34482693

RESUMEN

Chemical transformation of typically "nonlayered" phases into two-dimensional structures remains a formidable task. Among the thickness tunable CsPbX3 (X = Br, Br/I, I) nanosheets (NSs), CsPbBr1.5I1.5 NSs with a thickness of ∼4.9 nm have structural stability superior to ∼6.8 nm CsPbI3 NSs and better hole mobility than ∼3.7 nm CsPbBr3 NSs. Moving beyond the much-explored CsPbBr3 photodetectors, we demonstrate a sharp improvement of the photodetection of CsPbBr1.5I1.5 NS devices by thickening the NSs to ∼6.1 nm through combining 8-carbon and 18-carbon ligand surfactants. Thereby, the responsivity increases up to one of the highest values of 3313 A W-1 at 1.5 V (and 3946 A W-1 at 2 V) with detectivity of 1.6 × 1011 Jones at 1.5 V, due to the increase in carrier mobility up to 7.9 × 10-4 cm2 V-1 s-1. The better device performance of the NSs than 8.6-13.9 nm nanocubes (NCs) is due to their planarity which facilitates in-plane mobilization of the charge carriers.

15.
Org Biomol Chem ; 19(23): 5114-5120, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34018542

RESUMEN

Herein we report the synthesis, characterization and application of an azaheterocycle 4 obtained via an unprecedented C-N coupling. The neutral azaheterocycle undergoes one-electron reduction to form an air-stable radical anion in situ, which provides added benefit towards operational stability of the device during n-type charge transport. The unusual stability of this radical anion is due to the fact that the fused cyclopentane ring upon reduction forms aromatic cyclopentadienyl anion, and the negative charge delocalizes over the nearly planar azaheterocycle core. The present azaheterocycle can be considered as a mimic of a fullerene fragment, which shows balanced ambipolar charge transport in space charge limited current (SCLC) devices with moderate hole (µh) and electron (µe) mobilities (µh = 2.96 × 10-3 cm2 V-1 s-1 and µe = 1.11 × 10-4 cm2 V-1 s-1). Theoretical studies such as nucleus independent chemical shifts (NICS) calculations, anisotropy of the induced current density (ACID) plots, spin density mapping and anisotropic mobility calculations were performed to corroborate the experimental findings.

16.
J Phys Chem Lett ; 12(5): 1560-1566, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33534600

RESUMEN

Since the invention of field effect transistors (FETs) in the mid-20th century, nanosheet (NS) transistors have been considered the future toward fulfilling Moore's law of scaling. Moving beyond conventional semiconductors, thickness tunable orthorhombic CsPbBr3 NSs are achieved by a perfect control in which the lateral dimension can be extended close to 1 µm. While 18-carbon-chain ligands produce ∼4.5 nm thick NSs, the strongly adsorbed less dynamic 8-carbon-chain ligands result in ∼9.2 nm NSs. Equipped with a minimum trap state density, a lower effective mass of charge carriers, and better carrier transport, the NSs enable an order of magnitude increase in the field effect mobility as compared to that of CsPbBr3 nanocubes, thus revealing the efficacy of designing the two-dimensional morphology. The p-type field effect mobility (µFET) of the photoexcited NSs reaches 10-5 cm2 V-1 s-1 at 200 K upon mitigation of the challenges of ionic screening and constrained tunneling probability across organic ligands.

17.
Inorg Chem ; 59(23): 17758-17765, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33196166

RESUMEN

A novel metal-organic framework (MOF), [Zn2(tdca)2(bppd)2]·2DMF, has been synthesized solvothermally using the ligand thiophene-2,5-dicarboxylic acid (H2tdca), coligand N,N'-bis(4-pyridylmethylene)-1,4-benzenediamine (bppd), and Zn(NO3)2. Single crystal X-ray crystallography reveals that the titled MOF is a three-dimensional pillared-layered MOF. A layer is constituted by a Zn(tdca) unit, and the layers are stabilized by the long hydrocarbon coligand, bppd, which acts as a pillar. A rectangular pore size of 11.42 × 8.12 Å2 is found in the framework. The porous framework is found to be an excellent fluorescence sensor for the detection of toxic Cd2+ ion. The sensor shows high selectivity and sensitivity and a quick response toward Cd2+. The synthesized MOF is able to not only detect cadmium ions but also adsorb iodine in the gas phase. The MOF can adsorb ∼66% iodine, verified by thiosulfate-iodine titration and TG analysis. Adsorbed iodine can also be removed easily in acetonitrile as well as in n-hexane, which shows that iodine can be reversibly loaded as well as unloaded into the framework.

18.
Dalton Trans ; 49(43): 15461-15472, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33141130

RESUMEN

Three copper(ii) complexes, [Cu(L1)(NCS)]n (1), [Cu(L1)(N3)]n (2) and [Cu(L2)(N3)] (3) were synthesized from one Schiff base ligand and one reduced Schiff base ligand, (E)-4-chloro-2-[(2-propylaminoethylimino)methyl]phenol (HL1) and 4-chloro-2-[(2-(propylaminoethylamino) methyl]phenol (HL2), respectively. All complexes were characterized by various physicochemical studies, such as FT-IR, UV-Vis, ESI-MS, EPR and single crystal X-ray diffraction. Complexes 1 and 2 have 1D polymeric chain-like structures bridging through thiocyanate and azide anions, whereas complex 3 has a mononuclear structure in the solid state. All the complexes are active towards mimicking two well-known proteins, phosphatase and phenoxazinone synthase, using the disodium salt of 4-nitrophenylphosphate (4-NPP) and 2-aminophenol (OAP) as the substrate in DMF medium. Complexes 2 and 3 show the highest activity towards phosphatase and phenoxazinone synthase activity with kcat values of 22.6 s-1 and 134.4 h-1, respectively. EPR studies confirmed that for complex 1, the OAP oxidation goes through the generation of an organic radical at g = 1.99, which is due to an imine radical formation, whereas the metal center redox pathway is followed for complex 3. Extensive DFT calculations have been performed for both catalytic studies to put forward the most probable mechanistic pathways.


Asunto(s)
Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Cobre/química , Teoría Funcional de la Densidad , Catálisis , Técnicas de Química Sintética , Modelos Moleculares , Conformación Molecular , Bases de Schiff/química
19.
Dalton Trans ; 49(18): 5999-6011, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32314779

RESUMEN

Three mononuclear and one hexanuclear manganese(iii) complexes, [Mn(L)(H2O)2]·Cl (1), [Mn(L)(H2O)2]·Br (2), [Mn(L)(H2O)2]·NO3 (3), and [Mn6(L)6(NCS)6] (4), have been synthesized using a Schiff-base ligand, namely (E)-2-((3-(2-hydroxyethylamino)propylimino)methyl)phenol (H2L), and structurally characterized by the usual physicochemical techniques such as UV-Vis, FT-IR, ESI-MS, EPR and single crystal XRD. The structure of complex 4 is unique among all four complexes as the sixth coordination position of manganese is fulfilled by the oxygen atom of a neighbouring unit by covalent interaction. The phenoxazinone synthase like activity of all four complexes has been thoroughly investigated using three different substrates, o-aminophenol (OAP), 2-amino-4-methylphenol (MAP) and 3-amino-4-hydroxybenzoic acid (CAP). All complexes were found to be active towards catalysis and complex 4 showed the highest activity. The EPR study reveals that the oxidative dimerization of the substrates occurred through metal centered redox participation rather than a radical formation pathway. The experimental observations have been supported by DFT calculations to put forward the most probable mechanistic pathways operating in the catalytic cycle. Moreover, Mn3O4 nanoparticles (NPs) having two different morphologies have been synthesized using complexes 1 and complex 4 simply by calcination, respectively, with the aim to prepare nanozymes. These two synthesized NPs were also able to show phenoxazinone synthase like activity and thus complexes 1 and 4 can be claimed as precursors of nanozymes.

20.
J Phys Chem Lett ; 11(3): 591-600, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31887041

RESUMEN

The ambient stability, hysteresis, and trap states in organo-halide perovskite solar cells (PSCs) are correlated to the influence of interlayer interfaces and grain boundaries. Astute incorporation of Cu2ZnSnS4 (CZTS) and Au/CZTS core/shell nanocrystals (NCs) can realize the goal of simultaneously achieving better performance and ambient stability of the PSCs. With optimized Au/CZTS NC size and concentration in the photoactive layer, power conversion efficiency can be increased up to 19.97 ± 0.6% with ambient air stability >800 h, as compared to 14.46 ± 1.02% for the unmodified devices. Through efficient carrier generation by CZTS and perovskite, accompanied by the plasmonic effect of Au, carrier density is sufficiently increased as validated by transient absorption spectroscopy. NCs facilitate the interfacial charge transfer by suitable band alignment and removal of recombination centers such as metallic Pb0, surface defects, or impurity sites. NC embedding also increases the perovskite grain size and assists in pinhole filling, reducing the trap state density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...