Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 34(3): 451-466, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735516

RESUMEN

SIGNIFICANCE STATEMENT: Hyperinsulinemia induces hyperuricemia by activating net renal urate reabsorption in the renal proximal tubule. The basolateral reabsorptive urate transporter GLUT9a appears to be the dominant target for insulin. By contrast, IGF-1 infusion reduces serum urate (SU), through mechanisms unknown. Genetic variants of IGF1R associated with reduced SU have increased IGF-1R expression and interact with genes encoding the GLUT9 and ABCG2 urate transporters, in a sex-specific fashion, which controls the SU level. Activation of IGF-1/IGF-1R signaling in Xenopus oocytes modestly activates GLUT9a and inhibits insulin's stimulatory effect on the transporter, which also activates multiple secretory urate transporters-ABCG2, ABCC4, OAT1, and OAT3. The results collectively suggest that IGF-1 reduces SU by activating secretory urate transporters and inhibiting insulin's action on GLUT9a. BACKGROUND: Metabolic syndrome and hyperinsulinemia are associated with hyperuricemia. Insulin infusion in healthy volunteers elevates serum urate (SU) by activating net urate reabsorption in the renal proximal tubule, whereas IGF-1 infusion reduces SU by mechanisms unknown. Variation within the IGF1R gene also affects SU levels. METHODS: Colocalization analyses of a SU genome-wide association studies signal at IGF1R and expression quantitative trait loci signals in cis using COLOC2, RT-PCR, Western blotting, and urate transport assays in transfected HEK 293T cells and in Xenopus laevis oocytes. RESULTS: Genetic association at IGF1R with SU is stronger in women and is mediated by control of IGF1R expression. Inheritance of the urate-lowering homozygous genotype at the SLC2A9 locus is associated with a differential effect of IGF1R genotype between men and women. IGF-1, through IGF-1R, stimulated urate uptake in human renal proximal tubule epithelial cells and transfected HEK 293T cells, through activation of IRS1, PI3/Akt, MEK/ERK, and p38 MAPK; urate uptake was inhibited in the presence of uricosuric drugs, specific inhibitors of protein tyrosine kinase, PI3 kinase (PI3K), ERK, and p38 MAPK. In X. laevis oocytes expressing ten individual urate transporters, IGF-1 through endogenous IGF-1R stimulated urate transport mediated by GLUT9, OAT1, OAT3, ABCG2, and ABCC4 and inhibited insulin's stimulatory action on GLUT9a and OAT3. IGF-1 significantly activated Akt and ERK. Specific inhibitors of PI3K, ERK, and PKC significantly affected IGF-1 stimulation of urate transport in oocytes. CONCLUSIONS: The combined results of infusion, genetics, and transport experiments suggest that IGF-1 reduces SU by activating urate secretory transporters and inhibiting insulin's action.


Asunto(s)
Hiperinsulinismo , Hiperuricemia , Insulinas , Masculino , Humanos , Femenino , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ácido Úrico/metabolismo , Hiperuricemia/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Estudio de Asociación del Genoma Completo , Homeostasis , Fosfatidilinositol 3-Quinasas/genética , Insulinas/genética , Insulinas/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo
2.
Front Physiol ; 12: 713710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408667

RESUMEN

Insulin and hyperinsulinemia reduce renal fractional excretion of urate (FeU) and play a key role in the genesis of hyperuricemia and gout, via uncharacterized mechanisms. To explore this association further we studied the effects of genetic variation in insulin-associated pathways on serum urate (SU) levels and the physiological effects of insulin on urate transporters. We found that urate-associated variants in the human insulin (INS), insulin receptor (INSR), and insulin receptor substrate-1 (IRS1) loci associate with the expression of the insulin-like growth factor 2, IRS1, INSR, and ZNF358 genes; additionally, we found genetic interaction between SLC2A9 and the three loci, most evident in women. We also found that insulin stimulates the expression of GLUT9 and increases [14C]-urate uptake in human proximal tubular cells (PTC-05) and HEK293T cells, transport activity that was effectively abrogated by uricosurics or inhibitors of protein tyrosine kinase (PTK), PI3 kinase, MEK/ERK, or p38 MAPK. Heterologous expression of individual urate transporters in Xenopus oocytes revealed that the [14C]-urate transport activities of GLUT9a, GLUT9b, OAT10, OAT3, OAT1, NPT1 and ABCG2 are directly activated by insulin signaling, through PI3 kinase (PI3K)/Akt, MEK/ERK and/or p38 MAPK. Given that the high-capacity urate transporter GLUT9a is the exclusive basolateral exit pathway for reabsorbed urate from the renal proximal tubule into the blood, that insulin stimulates both GLUT9 expression and urate transport activity more than other urate transporters, and that SLC2A9 shows genetic interaction with urate-associated insulin-signaling loci, we postulate that the anti-uricosuric effect of insulin is primarily due to the enhanced expression and activation of GLUT9.

3.
Hum Mol Genet ; 29(6): 923-943, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31985003

RESUMEN

High serum urate is a prerequisite for gout and associated with metabolic disease. Genome-wide association studies (GWAS) have reported dozens of loci associated with serum urate control; however, there has been little progress in understanding the molecular basis of the associated loci. Here, we employed trans-ancestral meta-analysis using data from European and East Asian populations to identify 10 new loci for serum urate levels. Genome-wide colocalization with cis-expression quantitative trait loci (eQTL) identified a further five new candidate loci. By cis- and trans-eQTL colocalization analysis, we identified 34 and 20 genes, respectively, where the causal eQTL variant has a high likelihood that it is shared with the serum urate-associated locus. One new locus identified was SLC22A9 that encodes organic anion transporter 7 (OAT7). We demonstrate that OAT7 is a very weak urate-butyrate exchanger. Newly implicated genes identified in the eQTL analysis include those encoding proteins that make up the dystrophin complex, a scaffold for signaling proteins and transporters at the cell membrane; MLXIP that, with the previously identified MLXIPL, is a transcription factor that may regulate serum urate via the pentose-phosphate pathway and MRPS7 and IDH2 that encode proteins necessary for mitochondrial function. Functional fine mapping identified six loci (RREB1, INHBC, HLF, UBE2Q2, SFMBT1 and HNF4G) with colocalized eQTL containing putative causal SNPs. This systematic analysis of serum urate GWAS loci identified candidate causal genes at 24 loci and a network of previously unidentified genes likely involved in control of serum urate levels, further illuminating the molecular mechanisms of urate control.


Asunto(s)
Marcadores Genéticos , Predisposición Genética a la Enfermedad , Gota/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Ácido Úrico/sangre , Estudios de Casos y Controles , Estudio de Asociación del Genoma Completo , Genómica , Gota/sangre , Gota/genética , Humanos , Metaanálisis como Asunto
4.
Semin Nephrol ; 40(6): 535-549, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33678309

RESUMEN

Uric acid, the end product of purine metabolism, plays a key role in the pathogenesis of gout and other disease processes. The circulating serum uric acid concentration is governed by the relative balance of hepatic production, intestinal secretion, and renal tubular reabsorption and secretion. An elegant synergy between genome-wide association studies and transport physiology has led to the identification and characterization of the major transporters involved with urate reabsorption and secretion, in both kidney and intestine. This development, combined with continued analysis of population-level genetic data, has yielded an increasingly refined mechanistic understanding of uric acid homeostasis as well as greater understanding of the genetic and acquired influences on serum uric acid concentration. The continued delineation of novel and established regulatory pathways that regulate uric acid homeostasis promises to lead to a more complete understanding of uric acid-associated diseases and to identify new targets for treatment.


Asunto(s)
Gota , Transportadores de Anión Orgánico , Estudio de Asociación del Genoma Completo , Gota/genética , Homeostasis , Humanos , Transportadores de Anión Orgánico/genética , Ácido Úrico
5.
Front Physiol ; 10: 1323, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695625

RESUMEN

Hyperuricemia plays a critical causative role in gout. In contrast, hyperuricemia has a protective effect in neurodegenerative disorders, including Alzheimer's Disease. Genetic variation in the SLC2A9 gene, encoding the urate transporter GLUT9, exerts the largest single-gene effect on serum uric acid (SUA). We report here the identification of two GLUT9-interacting proteins, integral membrane protein 2B (ITM2B) and transmembrane protein 85 (TMEM85), isolated from a human kidney cDNA library using the dual-membrane yeast two-hybrid system. ITM2B is a ubiquitously expressed, N-glycosylated transmembrane regulatory protein, involved in familial dementias and retinal dystrophy; the function of TMEM85 is less defined. Using coimmunoprecipitation, we confirmed the physical interaction between ITM2B or TMEM85 and N-terminal GLUT9 isoforms (GLUT9a and GLUT9b) in transfected HEK 293T cells and Xenopus oocytes, wherein ITM2B but not TMEM85 inhibited GLUT9-mediated urate uptake. Additionally, co-expression of ITM2B with GLUT9 in oocytes inhibited N-glycosylation of GLUT9a more than GLUT9b and stimulated urate efflux by both isoforms. However, urate uptake by N-glycosylation and N-terminal deletion GLUT9 mutants was efficiently inhibited by ITM2B, indicating that neither N-glycosylation nor the N terminus is necessary for functional interaction of GLUT9 with ITM2B. Notably, ITM2B variants linked to familial Danish dementia and retinal dystrophy significantly attenuated the inhibition of GLUT9-mediated urate influx. We propose ITM2B as a potential regulatory link between urate homeostasis and neurodegenerative disorders.

6.
Arthritis Rheumatol ; 69(7): 1461-1469, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28371506

RESUMEN

OBJECTIVE: There is no evidence for a genetic association between organic anion transporters 1-3 (SLC22A6, SLC22A7, and SLC22A8) and multidrug resistance protein 4 (MRP4; encoded by ABCC4) with the levels of serum urate or gout. The Maori and Pacific (Polynesian) population of New Zealand has the highest prevalence of gout worldwide. The aim of this study was to determine whether any Polynesian population-specific genetic variants in SLC22A6-8 and ABCC4 are associated with gout. METHODS: All participants had ≥3 self-reported Maori and/or Pacific grandparents. Among the total sample set of 1,808 participants, 191 hyperuricemic and 202 normouricemic individuals were resequenced over the 4 genes, and the remaining 1,415 individuals were used for replication. Regression analyses were performed, adjusting for age, sex, and Polynesian ancestry. To study the functional effect of nonsynonymous variants of ABCC4, transport assays were performed in Xenopus laevis oocytes. RESULTS: A total of 39 common variants were detected, with an ABCC4 variant (rs4148500) significantly associated with hyperuricemia and gout. This variant was monomorphic for the urate-lowering allele in Europeans. There was evidence for an association of rs4148500 with gout in the resequenced samples (odds ratio [OR] 1.62 [P = 0.012]) that was replicated (OR 1.25 [P = 0.033]) and restricted to men (OR 1.43 [P = 0.001] versus OR 0.98 [P = 0.89] in women). The gout risk allele was associated with fractional excretion of uric acid in male individuals (ß = -0.570 [P = 0.01]). A rare population-specific allele (P1036L) with predicted strong functional consequence reduced the uric acid transport activity of ABCC4 by 30%. CONCLUSION: An association between ABCC4 and gout and fractional excretion of uric acid is consistent with the established role of MRP4 as a unidirectional renal uric acid efflux pump.


Asunto(s)
Gota/genética , Hiperuricemia/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Nativos de Hawái y Otras Islas del Pacífico/genética , Adulto , Animales , Western Blotting , Estudios de Casos y Controles , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Nueva Zelanda , Oocitos/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Transportadores de Anión Orgánico Sodio-Independiente/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Ácido Úrico/metabolismo , Ácido Úrico/orina , Xenopus laevis
7.
Pharmacol Res Perspect ; 5(2): e00291, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28357121

RESUMEN

Uric acid, generated from the metabolism of purines, has both proven and emerging roles in human disease. Serum uric acid in humans is determined by production and by the net balance of reabsorption and secretion in kidney and intestine. In the human kidney, epithelial reabsorption dominates over secretion, such that in normal subjects there is at least 90% net reabsorption of filtered urate resulting in a fractional excretion of <10%. Tranilast, an anti-inflammatory drug with pleiotropic effects, has a marked hypouricemic, uricosuric effect in humans. We report here that tranilast is a potent inhibitor of [14C]-urate transport mediated by the major reabsorptive urate transporters (URAT1, GLUT9, OAT4, and OAT10) in Xenopus oocytes; this provides an unequivocal molecular mechanism for the drug's uricosuric effect. Tranilast was found to inhibit urate transport mediated by URAT1 and GLUT9 in a fully reversible and noncompetitive (mixed) manner. In addition, tranilast inhibits the secretory urate transporters NPT1, OAT1, and OAT3 without affecting the secretory efflux pump ABCG2. Notably, while benzbromarone and probenecid inhibited urate as well as nicotinate transport, tranilast inhibited the urate transport function of URAT1, GLUT9, OAT4, OAT10, and NPT1, without significantly affecting nicotinate transport mediated by SMCT1 (IC 50 ~1.1 mmol/L), SMCT2 (IC 50 ~1.0 mmol/L), and URAT1 (IC 50 ~178 µmol/L). In summary, tranilast causes uricosuria by inhibiting all the major reabsorptive urate transporters, selectively affecting urate over nicotinate transport. These data have implications for the treatment of hyperuricemia and gout, the pharmacology of tranilast, and the structure-function analysis of urate transport.

8.
Annu Rev Physiol ; 77: 323-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25422986

RESUMEN

Uric acid, generated from the metabolism of purines, has proven and emerging roles in human disease. Serum uric acid is determined by production and the net balance of reabsorption or secretion by the kidney and intestine. A detailed understanding of epithelial absorption and secretion of uric acid has recently emerged, aided in particular by the results of genome-wide association studies of hyperuricemia. Novel genetic and regulatory networks with effects on uric acid homeostasis have also emerged. These developments promise to lead to a new understanding of the various diseases associated with hyperuricemia and to novel, targeted therapies for hyperuricemia.


Asunto(s)
Homeostasis/fisiología , Biología Molecular , Ácido Úrico/metabolismo , Animales , Estudio de Asociación del Genoma Completo , Humanos , Hiperuricemia/genética , Hiperuricemia/metabolismo , Hiperuricemia/fisiopatología , Transportadores de Anión Orgánico/fisiología , Transducción de Señal/fisiología
9.
Proc Natl Acad Sci U S A ; 105(51): 20434-9, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19075240

RESUMEN

Leukotrienes (LTs) are signaling molecules derived from arachidonic acid that initiate and amplify innate and adaptive immunity. In turn, how their synthesis is organized on the nuclear envelope of myeloid cells in response to extracellular signals is not understood. We define the supramolecular architecture of LT synthesis by identifying the activation-dependent assembly of novel multiprotein complexes on the outer and inner nuclear membranes of mast cells. These complexes are centered on the integral membrane protein 5-Lipoxygenase-Activating Protein, which we identify as a scaffold protein for 5-Lipoxygenase, the initial enzyme of LT synthesis. We also identify these complexes in mouse neutrophils isolated from inflamed joints. Our studies reveal the macromolecular organization of LT synthesis.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Proteínas Portadoras/metabolismo , Leucotrienos/biosíntesis , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/análisis , Membrana Nuclear/metabolismo , Proteínas Activadoras de la 5-Lipooxigenasa , Animales , Artritis/enzimología , Artritis/metabolismo , Proteínas de la Membrana/análisis , Ratones , Células Mieloides/química , Células Mieloides/metabolismo , Neutrófilos/química , Neutrófilos/metabolismo , Membrana Nuclear/química
10.
J Immunol ; 175(10): 6271-3, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16272277

RESUMEN

For many years, cyclooxygenase-2 (COX-2), a critical enzyme for PG production, has been the favorite target for anti-inflammatory drug development. However, recent revelations regarding the adverse effects of selective COX-2 inhibitors have stimulated intense debate. Interestingly, in the early phase of inflammation, COX-2 facilitates inflammatory PG production while in the late phase it has anti-inflammatory effects. Moreover, although some PGs are proinflammatory, others have anti-inflammatory effects. Thus, it is likely that PGs with opposing effects maintain homeostasis, although the molecular mechanism(s) remains unclear. We report here that an inflammatory PG, PGD2, via its receptor, mediates the activation of NF-kappaB stimulating COX-2 gene expression. Most interestingly, an anti-inflammatory PG (PGA1) suppresses NF-kappaB activation and inhibits COX-2 gene expression. We propose that while pro- and anti-inflammatory PGs counteract each other to maintain homeostasis, selective COX-2 inhibitors may disrupt this balance, thereby resulting in reported adverse effects.


Asunto(s)
Inflamación/fisiopatología , Prostaglandinas/fisiología , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/fisiología , Inhibidores de la Ciclooxigenasa 2/efectos adversos , Inhibidores de la Ciclooxigenasa 2/farmacología , Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Células 3T3 NIH , Prostaglandina D2/farmacología , Prostaglandinas/inmunología , Prostaglandinas/farmacología , Prostaglandinas A/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
J Biol Chem ; 280(38): 32897-904, 2005 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-16061484

RESUMEN

Prematurity is one of the leading causes of infant mortality. It may result from intrauterine infection, which mediates premature labor by stimulating the production of inflammatory lipid mediators such as prostaglandin F2alpha (PGF2alpha). The biological effects of PGF2alpha are mediated via the G protein-coupled receptor FP; however, the molecular mechanism(s) of FP signaling that mediates inflammatory lipid mediator production remains unclear. We reported previously that in the human uterus, a composite organ in which fibroblast, epithelial, and smooth muscle cells are the major constituents, an inverse relationship exists between the levels of PGF2alpha and a steroid-inducible anti-inflammatory protein, uteroglobin. Here we report that, in NIH 3T3 fibroblasts and human uterine smooth muscle cells, FP signaling is mediated via multi-kinase pathways in a cell type-specific manner to activate NF-kappaB, thus stimulating the expression of cyclooxygenase-2. Cyclooxygenase-2 is a critical enzyme for the production of prostaglandins from arachidonic acid, which is released from membrane phospholipids by phospholipase A2, the expression of which is also stimulated by PGF2alpha. Most importantly, uteroglobin inhibits FP-mediated NF-kappaB activation and cyclooxygenase-2 gene expression by binding and most likely by sequestering PGF2alpha into its central hydrophobic cavity, thereby preventing FP-PGF2alpha interaction and suppressing the production of inflammatory lipid mediators. We propose that uteroglobin plays important roles in maintaining homeostasis in organs that are vulnerable to inadvertent stimulation of FP-mediated inflammatory response.


Asunto(s)
Regulación de la Expresión Génica , Metabolismo de los Lípidos , Receptores de Prostaglandina/metabolismo , Uteroglobina/fisiología , Animales , Ácido Araquidónico/metabolismo , Northern Blotting , Western Blotting , Células Cultivadas , Células Epiteliales/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Inflamación , Ratones , Modelos Moleculares , Miocitos del Músculo Liso/citología , Células 3T3 NIH , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Unión Proteica , Conformación Proteica , ARN/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Tiempo , Uteroglobina/metabolismo , Útero/metabolismo , Útero/patología
12.
J Exp Med ; 199(10): 1317-30, 2004 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-15148333

RESUMEN

Uteroglobin (UG) is an antiinflammatory protein secreted by the epithelial lining of all organs communicating with the external environment. We reported previously that UG-knockout mice manifest exaggerated inflammatory response to allergen, characterized by increased eotaxin and Th2 cytokine gene expression, and eosinophil infiltration in the lungs. In this study, we uncovered that the airway epithelia of these mice also express high levels of cyclooxygenase (COX)-2, a key enzyme for the production of proinflammatory lipid mediators, and the bronchoalveolar lavage fluid (BALF) contain elevated levels of prostaglandin D2. These effects are abrogated by recombinant UG treatment. Although it has been reported that prostaglandin D2 mediates allergic inflammation via its receptor, DP, neither the molecular mechanism(s) of DP signaling nor the mechanism by which UG suppresses DP-mediated inflammatory response are clearly understood. Here we report that DP signaling is mediated via p38 mitogen-activated protein kinase, p44/42 mitogen-activated protein kinase, and protein kinase C pathways in a cell type-specific manner leading to nuclear factor-kappaB activation stimulating COX-2 gene expression. Further, we found that recombinant UG blocks DP-mediated nuclear factor-kappaB activation and suppresses COX-2 gene expression. We propose that UG is an essential component of a novel innate homeostatic mechanism in the mammalian airways to repress allergen-induced inflammatory responses.


Asunto(s)
Inflamación/prevención & control , Músculo Liso/fisiología , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/fisiología , Receptores de Prostaglandina/antagonistas & inhibidores , Receptores de Prostaglandina/fisiología , Uteroglobina/farmacología , Células 3T3 , Alérgenos , Animales , Bronquios/fisiología , Línea Celular , Ciclooxigenasa 2 , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Isoenzimas/genética , Proteínas de la Membrana , Ratones , Prostaglandina-Endoperóxido Sintasas/genética , Alveolos Pulmonares/fisiología , Proteínas Recombinantes/farmacología
13.
Proc Natl Acad Sci U S A ; 101(17): 6587-92, 2004 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-15084748

RESUMEN

Cell signaling leading to the formation of leukotriene (LT)C(4) requires the localization of the four key biosynthetic enzymes on the outer nuclear membrane and endoplasmic reticulum. Whether any macromolecular organization of these proteins exists is unknown. By using fluorescence lifetime imaging microscopy and biochemical analysis, we demonstrate the presence of two distinct multimeric complexes that regulate the formation of LTs in RBL-2H3 cells. One complex consists of multimers of LTC(4) synthase and the 5-lipoxygenase activating protein (FLAP). The second complex consists of multimers of FLAP. Surprisingly, all LTC(4) synthase was found to be in association with FLAP. The results indicate that the formation of LTC(4) and LTB(4) may be determined by the compartmentalization of biosynthetic enzymes in discrete molecular complexes.


Asunto(s)
Leucotrieno C4/biosíntesis , Proteínas Activadoras de la 5-Lipooxigenasa , Northern Blotting , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/metabolismo , Transferencia de Energía , Humanos , Leucotrieno C4/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...