Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Water Res ; 257: 121751, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38744062

RESUMEN

The human urine metabolome is complex, containing a wide range of organic metabolites that affect treatment of urine collected in resource-oriented sanitation systems. In this study, an advanced oxidation process involving heat-activated peroxydisulphate was used to selectively oxidise organic metabolites in urine over urea and chloride. Initial experiments evaluated optimal conditions (peroxydisulphate dose, temperature, time, pH) for activation of peroxydisulphate in unconcentrated, non-hydrolysed synthetic urine and real urine acidified to pH 3.0. Subsequent experiments determined the fate of 268 endogenous organic metabolites (OMs) and removal of COD from unconcentrated and concentrated real urine (80-90% mass reduced by evaporation). The results revealed >90% activation of 60 mM peroxydisulphate in real unconcentrated urine heated to 90 °C for 1 h, resulting in 43% ΣOMs degradation, 22% COD removal and 56% total organic carbon removal, while >94% of total nitrogen and >97% of urea in real unconcentrated urine were recovered. The mechanism of urea degradation was identified to be chemical hydrolysis to ammonia, with the rate constant for this reaction determined to be 1.9 × 10-6 s-1 at pH 3.0 and 90 °C. Treating concentrated real urine resulted in similar removal of COD, ΣOMs degradation and total nitrogen loss as observed for unconcentrated urine, but with significantly higher chloride oxidation and chemical hydrolysis of urea. Targeted metabolomic analysis revealed that peroxydisulphate treatment degraded 157 organic metabolites in urine, of which 67 metabolites were degraded by >80%. The rate constant for the reaction of sulphate radicals with oxidisable endogenous organic metabolites in urine was estimated to exceed 108 M-1 s-1. These metabolites were preferentially oxidised over chloride and urea in acidified, non-hydrolysed urine treated with peroxydisulphate. Overall, the findings support the development of emerging urine recycling technologies, including alkaline/acid dehydration and reverse osmosis, where the presence of endogenous organic urine metabolites significantly influences treatment parameters such as energy demand and product purity.

3.
Metabolites ; 14(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38248844

RESUMEN

Maternal pathological conditions such as infections and chronic diseases, along with unexpected events during labor, can lead to life-threatening perinatal outcomes. These outcomes can have irreversible consequences throughout an individual's entire life. Urinary metabolomics can provide valuable insights into early physiological adaptations in healthy newborns, as well as metabolic disturbances in premature infants or infants with birth complications. In the present study, we measured 180 metabolites and metabolite ratios in the urine of 13 healthy (hospital-discharged) and 38 critically ill newborns (admitted to the neonatal intensive care unit (NICU)). We used an in-house-developed targeted tandem mass spectrometry (MS/MS)-based metabolomic assay (TMIC Mega) combining liquid chromatography (LC-MS/MS) and flow injection analysis (FIA-MS/MS) to quantitatively analyze up to 26 classes of compounds. Average urinary concentrations (and ranges) for 167 different metabolites from 38 critically ill NICU newborns during their first 24 h of life were determined. Similar sets of urinary values were determined for the 13 healthy newborns. These reference data have been uploaded to the Human Metabolome Database. Urinary concentrations and ranges of 37 metabolites are reported for the first time for newborns. Significant differences were found in the urinary levels of 44 metabolites between healthy newborns and those admitted at the NICU. Metabolites such as acylcarnitines, amino acids and derivatives, biogenic amines, sugars, and organic acids are dysregulated in newborns with bronchopulmonary dysplasia (BPD), asphyxia, or newborns exposed to SARS-CoV-2 during the intrauterine period. Urine can serve as a valuable source of information for understanding metabolic alterations associated with life-threatening perinatal outcomes.

4.
J Agric Food Chem ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181219

RESUMEN

Cannabis is widely used for medicinal and recreational purposes. As a result, there is increased interest in its chemical components and their physiological effects. However, current information on cannabis chemistry is often outdated or scattered across many books and journals. To address this issue, we used modern metabolomics techniques and modern bioinformatics techniques to compile a comprehensive list of >6000 chemical constituents in commercial cannabis. The metabolomics methods included a combination of high- and low-resolution liquid chromatography-mass spectrometry (MS), gas chromatography-MS, and inductively coupled plasma-MS. The bioinformatics methods included computer-aided text mining and computational genome-scale metabolic inference. This information, along with detailed compound descriptions, physicochemical data, known physiological effects, protein targets, and referential compound spectra, has been made available through a publicly accessible database called the Cannabis Compound Database (https://cannabisdatabase.ca). Such a centralized, open-access resource should prove to be quite useful for the cannabis community.

5.
Ecotoxicol Environ Saf ; 270: 115888, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38150752

RESUMEN

Glyphosate, a globally prevalent herbicide known for its selective inhibition of the shikimate pathway in plants, is now implicated in physiological effects on humans and animals, probably due to its impacts in their gut microbiomes which possess the shikimate pathway. In this study, we investigate the effects of environmentally relevant concentrations of glyphosate on the gut microbiota, neurotransmitter levels, and anxiety in zebrafish. Our findings demonstrate that glyphosate exposure leads to dysbiosis in the zebrafish gut, alterations in central and peripheral serotonin levels, increased dopamine levels in the brain, and notable changes in anxiety and social behavior. While the dysbiosis can be attributed to glyphosate's antimicrobial properties, the observed effects on neurotransmitter levels leading to the reported induction of oxidative stress in the brain indicate a novel and significant mode of action for glyphosate, namely the impairment of the microbiome-gut-axis. While further investigations are necessary to determine the relevance of this mechanism in humans, our findings shed light on the potential explanation for the contradictory reports on the safety of glyphosate for consumers.


Asunto(s)
Glifosato , Herbicidas , Humanos , Animales , Pez Cebra/metabolismo , Glicina/toxicidad , Disbiosis/inducido químicamente , Ácido Shikímico/metabolismo , Herbicidas/toxicidad , Neurotransmisores
6.
Cell Rep Med ; 4(11): 101254, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37890487

RESUMEN

The post-acute sequelae of COVID-19 (PASC), also known as long COVID, is often associated with debilitating symptoms and adverse multisystem consequences. We obtain plasma samples from 117 individuals during and 6 months following their acute phase of infection to comprehensively profile and assess changes in cytokines, proteome, and metabolome. Network analysis reveals sustained inflammatory response, platelet degranulation, and cellular activation during convalescence accompanied by dysregulation in arginine biosynthesis, methionine metabolism, taurine metabolism, and tricarboxylic acid (TCA) cycle processes. Furthermore, we develop a prognostic model composed of 20 molecules involved in regulating T cell exhaustion and energy metabolism that can reliably predict adverse clinical outcomes following discharge from acute infection with 83% accuracy and an area under the curve (AUC) of 0.96. Our study reveals pertinent biological processes during convalescence that differ from acute infection, and it supports the development of specific therapies and biomarkers for patients suffering from long COVID.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Convalecencia , Multiómica , Biomarcadores , Fenotipo
7.
Sci Rep ; 13(1): 12420, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528111

RESUMEN

One of the major challenges currently faced by global health systems is the prolonged COVID-19 syndrome (also known as "long COVID") which has emerged as a consequence of the SARS-CoV-2 epidemic. It is estimated that at least 30% of patients who have had COVID-19 will develop long COVID. In this study, our goal was to assess the plasma metabolome in a total of 100 samples collected from healthy controls, COVID-19 patients, and long COVID patients recruited in Mexico between 2020 and 2022. A targeted metabolomics approach using a combination of LC-MS/MS and FIA MS/MS was performed to quantify 108 metabolites. IL-17 and leptin were measured in long COVID patients by immunoenzymatic assay. The comparison of paired COVID-19/long COVID-19 samples revealed 53 metabolites that were statistically different. Compared to controls, 27 metabolites remained dysregulated even after two years. Post-COVID-19 patients displayed a heterogeneous metabolic profile. Lactic acid, lactate/pyruvate ratio, ornithine/citrulline ratio, and arginine were identified as the most relevant metabolites for distinguishing patients with more complicated long COVID evolution. Additionally, IL-17 levels were significantly increased in these patients. Mitochondrial dysfunction, redox state imbalance, impaired energy metabolism, and chronic immune dysregulation are likely to be the main hallmarks of long COVID even two years after acute COVID-19 infection.


Asunto(s)
COVID-19 , Interleucina-17 , Humanos , Espectrometría de Masas en Tándem , Cromatografía Liquida , SARS-CoV-2 , Metaboloma , Metabolómica , Síndrome Post Agudo de COVID-19
8.
Magn Reson Chem ; 61(12): 681-704, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37265034

RESUMEN

Nuclear magnetic resonance (NMR) spectral analysis of biofluids can be a time-consuming process, requiring the expertise of a trained operator. With NMR becoming increasingly popular in the field of metabolomics, there is a growing need to change this paradigm and to automate the process. Here we introduce MagMet, an online web server, that automates the processing and quantification of 1D 1 H NMR spectra from biofluids-specifically, human serum/plasma metabolites, including those associated with inborn errors of metabolism (IEM). MagMet uses a highly efficient data processing procedure that performs automatic Fourier Transformation, phase correction, baseline optimization, chemical shift referencing, water signal removal, and peak picking/peak alignment. MagMet then uses the peak positions, linewidth information, and J-couplings from its own specially prepared standard metabolite reference spectral NMR library of 85 serum/plasma compounds to identify and quantify compounds from experimentally acquired NMR spectra of serum/plasma. MagMet employs linewidth adjustment for more consistent quantification of metabolites from higher field instruments and incorporates a highly efficient data processing procedure for more rapid and accurate detection and quantification of metabolites. This optimized algorithm allows the MagMet webserver to quickly detect and quantify 58 serum/plasma metabolites in 2.6 min per spectrum (when processing a dataset of 50-100 spectra). MagMet's performance was also assessed using spectra collected from defined mixtures (simulating other biofluids), with >100 previously measured plasma spectra, and from spiked serum/plasma samples simulating known IEMs. In all cases, MagMet performed with precision and accuracy matching the performance of human spectral profiling experts. MagMet is available at http://magmet.ca.


Asunto(s)
Imagen por Resonancia Magnética , Metabolómica , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Suero , Algoritmos
9.
Magn Reson Chem ; 61(12): 705-717, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37265043

RESUMEN

We report the development of a software program, called MagMet-F, that automates the processing and quantification of 1D 1 H NMR of human fecal extracts. To optimize the program, we identified 82 potential fecal metabolites using 1D 1 H NMR of six human fecal extracts using manual profiling and a literature review of known fecal metabolites. We acquired pure versions of those metabolites and then acquired their 1D 1 H NMR spectra at 700 MHz to generate a fecal metabolite spectral library for MagMet-F. The fitting of these metabolites by MagMet-F was iteratively optimized to replicate manual profiling. We validated MagMet-F's automated profiling using a test set of six fecal extracts. It correctly identified 80% of the compounds and quantified those within <20% of the values determined by manual profiling using Chenomx. We also compared MagMet-F's profiling performance to two other open-access NMR profiling tools, Bayesil and Batman. MagMet-F outperformed both. Bayesil repeatedly overestimated metabolite concentrations by 10% to 40% while Batman was unable to properly quantify any compounds and took 10-20× longer. We have implemented MagMet-F as a freely accessible web server to enable automated, fast and convenient 1D 1 H NMR spectral profiling of fecal samples. MagMet-F is available at https://www.magmet.ca.


Asunto(s)
Metabolómica , Programas Informáticos , Humanos , Metabolómica/métodos , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética
10.
Clin Kidney J ; 16(2): 272-284, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36751625

RESUMEN

Background: Angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the kidneys. Beyond serving as a crucial endogenous regulator of the renin-angiotensin system, ACE2 also possess a unique function to facilitate amino acid absorption. Our observational study sought to explore the relationship between urine ACE2 (uACE2) and renal outcomes in coronavirus disease 2019 (COVID-19). Methods: In a cohort of 104 patients with COVID-19 without acute kidney injury (AKI), 43 patients with COVID-19-mediated AKI and 36 non-COVID-19 controls, we measured uACE2, urine tumour necrosis factor receptors I and II (uTNF-RI and uTNF-RII) and neutrophil gelatinase-associated lipocalin (uNGAL). We also assessed ACE2 staining in autopsy kidney samples and generated a propensity score-matched subgroup of patients to perform a targeted urine metabolomic study to describe the characteristic signature of COVID-19. Results: uACE2 is increased in patients with COVID-19 and further increased in those that developed AKI. After adjusting uACE2 levels for age, sex and previous comorbidities, increased uACE2 was independently associated with a >3-fold higher risk of developing AKI [odds ratio 3.05 (95% confidence interval 1.23‒7.58), P = .017]. Increased uACE2 corresponded to a tubular loss of ACE2 in kidney sections and strongly correlated with uTNF-RI and uTNF-RII. Urine quantitative metabolome analysis revealed an increased excretion of essential amino acids in patients with COVID-19, including leucine, isoleucine, tryptophan and phenylalanine. Additionally, a strong correlation was observed between urine amino acids and uACE2. Conclusions: Elevated uACE2 is related to AKI in patients with COVID-19. The loss of tubular ACE2 during SARS-CoV-2 infection demonstrates a potential link between aminoaciduria and proximal tubular injury.

11.
Gates Open Res ; 6: 77, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36415883

RESUMEN

Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network ( www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach. Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children. Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases. Trial registration NCT03208725.

12.
Nutrients ; 14(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014800

RESUMEN

A relationship between ulcerative colitis (UC) and diet has been shown in epidemiological and experimental studies. In a 6-month, open-label, randomized, placebo-controlled trial, adult UC patients in clinical remission were randomized to either an "Anti-inflammatory Diet (AID)" or "Canada's Food Guide (CFG)". Menu plans in the AID were designed to increase the dietary intake of dietary fiber, probiotics, antioxidants, and omega-3 fatty acids and to decrease the intake of red meat, processed meat, and added sugar. Stool was collected for fecal calprotectin (FCP) and microbial analysis. Metabolomic analysis was performed on urine, serum, and stool samples at the baseline and study endpoint. In this study, 53 patients were randomized. Five (19.2%) patients in the AID and 8 (29.6%) patients in the CFG experienced a clinical relapse. The subclinical response to the intervention (defined as FCP < 150 µg/g at the endpoint) was significantly higher in the AID group (69.2 vs. 37.0%, p = 0.02). The patients in the AID group had an increased intake of zinc, phosphorus, selenium, yogurt, and seafood versus the control group. Adherence to the AID was associated with significant changes in the metabolome, with decreased fecal acetone and xanthine levels along with increased fecal taurine and urinary carnosine and p-hydroxybenzoic acid levels. The AID subjects also had increases in fecal Bifidobacteriaceae, Lachnospiraceae, and Ruminococcaceae. In this study, we found thatdietary modifications involving the increased intake of anti-inflammatory foods combined with a decreased intake of pro-inflammatory foods were associated with metabolic and microbial changes in UC patients in clinical remission and were effective in preventing subclinical inflammation.


Asunto(s)
Colitis Ulcerosa , Dieta , Inflamación , Adulto , Colitis Ulcerosa/dietoterapia , Colitis Ulcerosa/metabolismo , Dieta/métodos , Heces/química , Humanos , Inflamación/dietoterapia , Inflamación/prevención & control , Complejo de Antígeno L1 de Leucocito/análisis
13.
Int J Obes (Lond) ; 46(9): 1712-1719, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35840772

RESUMEN

BACKGROUND/OBJECTIVES: Differences in gut microbiota, metabolites and immune markers have been observed between individuals with and without obesity. Our study determined the temporal association between infant fecal gut metabolites, sIgA and body mass index (BMI) z score of preschool children, independent of pre/postnatal factors. SUBJECTS/METHODS: The study includes a subset of 647 infants from the CHILD Cohort Study (recruited between January 1, 2009, and December 31, 2012). Fecal metabolites and sIgA were measured at 3-4 months of age, and age and sex adjusted BMI z scores at 1 and 3 years of age. Associations between the metabolites, IgA, and child BMI z scores at age 1 and 3 years were tested using linear regression adjusted for pre/postnatal factors (breastfeeding, birthweight-for-gestational age, birthmode and IAP, solid food introduction). RESULTS: Mean BMI z score for all infants was 0.34 (SD 1.16) at 1 year (N = 647) and 0.71 (SD 1.06) at 3 years (N = 573). High fecal formate in infancy was associated with a significantly lower BMI z score (adjusted mean difference -0.23 (95% CI -0.42, -0.04)) and high butyrate was associated with a higher BMI z score (adjusted mean difference 0.21 (95% CI 0.01, 0.41)) at age 3 years only. The influence of formate and butyrate on BMI z score at age 3 were seen only in those that were not exclusively breastfed at stool sample collection (adjusted mean difference for high formate/EBF- group: -0.33 (95%CI -0.55, -0.10) and 0.25 (95% CI 0.02, 0.47) for high butyrate/EBF- group). No associations were seen between sIgA and BMI z score at age 1 or 3 years in adjusted regression models. CONCLUSION AND RELEVANCE: Differences in fecal metabolite levels in early infancy were associated with childhood BMI. This study identifies an important area of future research in understanding the pathogenesis of obesity.


Asunto(s)
Inmunoglobulina A Secretora , Obesidad Infantil , Índice de Masa Corporal , Butiratos , Niño , Preescolar , Estudios de Cohortes , Femenino , Formiatos , Humanos , Lactante , Obesidad , Obesidad Infantil/epidemiología , Estudios Prospectivos
14.
Int J Hyg Environ Health ; 244: 113990, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714548

RESUMEN

The Alberta Biomonitoring Program (ABP) was created in 2005 with the initial goal of establishing baseline levels of exposure to environmental chemicals in specific populations in the province of Alberta, Canada, and was later expanded to include multiple phases. The first two phases focused on evaluating exposure in pregnant women (Phase One, 2005) and children (Phase Two, 2004-2006) by analyzing residual serum specimens. Phase Three (2013-2016) employed active recruitment techniques to evaluate environmental exposures using a revised list of chemicals in paired serum pools from pregnant women and umbilical cord blood. These three phases of the program monitored a total of 226 chemicals in 285 pooled serum samples representing 31,529 individuals. Phase Four (2017-2020) of the ABP has taken a more targeted approach, focusing on the impact of the federal legalization of cannabis on the exposure of pregnant women in Alberta to cannabis, as well as tobacco and alcohol using residual prenatal screening serum specimens. Chemicals monitored in the first three phases include herbicides, neutral pesticides, metals, metalloids, and micronutrients, methylmercury, organochlorine pesticides, organophosphate pesticides, parabens, phthalate metabolites, perfluoroalkyl substances (PFAS), phenols, phytoestrogens, polybrominated compounds, polychlorinated biphenyls (PCBs), dioxins and furans, polycyclic aromatic hydrocarbons (PAHs), and tobacco biomarkers. Phase Four monitored six biomarkers of tobacco, alcohol, and cannabis. All serum samples were pooled. Mean concentrations and 95% confidence intervals (CIs) were calculated for the chemicals detected in ≥25% of the sample pools. cross the first three phases, the data from the ABP has provided baseline exposure levels for the chemicals in pregnant women, children, and newborns across the province. Comparison within and among the phases has highlighted differences in exposure levels with age, geography, seasonality, sample type, and time. The strategies employed throughout the program phases have been demonstrated to provide effective models for population biomonitoring.


Asunto(s)
Contaminantes Ambientales , Plaguicidas , Bifenilos Policlorados , Alberta , Monitoreo Biológico , Biomarcadores , Niño , Monitoreo del Ambiente , Femenino , Humanos , Recién Nacido , Exposición Materna , Embarazo
15.
Front Pharmacol ; 13: 831052, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35145419

RESUMEN

Numerous existing full-spectrum cannabis extract products have been used in clinical trials for the treatment of various diseases. Despite their efficacy, the clinical use of some of these full-spectrum cannabis extracts is limited by behavioral side effects such as cognitive dysfunction and impaired motor skills. To better understand what constitutes cannabis-induced behavioral effects, our objective was to identify a novel panel of blood-based metabolites that are predictive, diagnostic, and/or prognostic of behavioral effects. At 8 weeks of age, male rats were randomly assigned to groups and were gavage fed with full-spectrum cannabis extract (tetrahydrocannabinol/cannabidiol (THC/CBD) along with all other cannabis compounds, 15 mg/kg), broad-spectrum cannabis extract (CBD along with all other cannabis compounds, 15 mg/kg), or vehicle oil. Four hours after being gavage fed, behavioral assessments were determined using the open field test and the elevated plus maze. Following these assessments, serum was collected from all rats and the serum metabolites were identified and quantified by LC-MS/MS and 1H NMR spectroscopy. We found that only rats treated with full-spectrum cannabis extract exhibited behavioral changes. Compared to vehicle-treated and broad-spectrum extract-treated rats, full-spectrum extract-treated rats demonstrated higher serum concentrations of the amino acid phenylalanine and long-chain acylcarnitines, as well as lower serum concentrations of butyric acid and lysophosphatidylcholines. This unique metabolomic fingerprint in response to cannabis extract administration is linked to behavioral effects and may represent a biomarker profile of cannabis-induced behavioral changes. If validated, this work may allow a metabolomics-based decision tree that would aid in the rapid diagnosis of cannabis-induced behavioral changes including cognitive impairment.

16.
J Agric Food Chem ; 70(5): 1724-1746, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35098717

RESUMEN

Targeted direct injection/liquid chromatography coupled to tandem mass spectrometry-based metabolomics was employed to identify metabolite alterations that could differentiate subclinical mastitis (SCM) from control (CON) dairy cows at -8, -4, disease diagnosis, +4 and +8 wks relative to parturition. We identified and measured 128 metabolites in the serum. Univariate analysis revealed significant alterations of serum metabolites at all five time points studied. By applying multivariate analyses including principle component analysis and partial least squares-discriminant analysis, some of the metabolites were found to have the strongest power for discriminating the SCM from CON cows. The top five metabolites with the greatest variable importance in projection values were selected as potential biomarkers for SCM. A set of five serum metabolites including lysine, ornithine, isoleucine, LysoPC a C17:0, and leucine at -8 wks and five other metabolites including lysine, leucine, isoleucine, kynurenine, and sphingomyelin (SM) C26:0 at -4 wks prepartum were determined as predictive biomarkers for SCM, which provided highly predictive capabilities with AUC (area under the curve) at 1.00. Five metabolites including lysine, leucine, isoleucine, kynurenine, and SM C26:1 in the serum were identified as diagnostic biomarkers for SCM with the AUC of 1.00. Moreover, we observed that distinct metabolic pathways were affected in SCM cows including lysine degradation, biotin, cysteine, methionine, and glutathione metabolism, valine, leucine, and isoleucine biosynthesis and degradation, and aminoacyl-tRNA biosynthesis prior to and during the occurrence of the disease. Results of this study showed that metabolomics analyses can be used to identify susceptible cows to SCM starting from -8 and -4 wks prepartum and that blood can be used to diagnose cows with SCM.


Asunto(s)
Mastitis , Metabolómica , Animales , Biomarcadores , Bovinos , Cromatografía Liquida , Femenino , Humanos , Espectrometría de Masas en Tándem
18.
Nucleic Acids Res ; 50(D1): D622-D631, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34986597

RESUMEN

The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB's search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB's ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.


Asunto(s)
Bases de Datos Genéticas , Metaboloma/genética , Metabolómica/clasificación , Humanos , Lipidómica/clasificación , Espectrometría de Masas , Interfaz Usuario-Computador
19.
Metabolites ; 11(9)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34564449

RESUMEN

The retained placenta is a common pathology of dairy cows. It is associated with a significant drop in the dry matter intake, milk yield, and increased susceptibility of dairy cows to metritis, mastitis, and displaced abomasum. The objective of this study was to identify metabolic alterations that precede and are associated with the disease occurrence. Blood samples were collected from 100 dairy cows at -8 and -4 weeks prior to parturition and on the day of retained placenta, and only 16 healthy cows and 6 cows affected by retained placenta were selected to measure serum polar metabolites by a targeted gas chromatography-mass spectroscopy (GC-MS) metabolomics approach. A total of 27 metabolites were identified and quantified in the serum. There were 10, 18, and 17 metabolites identified as being significantly altered during the three time periods studied. However, only nine metabolites were identified as being shared among the three time periods including five amino acids (Asp, Glu, Ser, Thr, and Tyr), one sugar (myo-inositol), phosphoric acid, and urea. The identified metabolites can be used as predictive biomarkers for the risk of retained placenta in dairy cows and might help explain the metabolic processes that occur prior to the incidence of the disease and throw light on the pathomechanisms of the disease.

20.
PLoS One ; 16(8): e0256784, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34460840

RESUMEN

Viral sepsis has been proposed as an accurate term to describe all multisystemic dysregulations and clinical findings in severe and critically ill COVID-19 patients. The adoption of this term may help the implementation of more accurate strategies of early diagnosis, prognosis, and in-hospital treatment. We accurately quantified 110 metabolites using targeted metabolomics, and 13 cytokines/chemokines in plasma samples of 121 COVID-19 patients with different levels of severity, and 37 non-COVID-19 individuals. Analyses revealed an integrated host-dependent dysregulation of inflammatory cytokines, neutrophil activation chemokines, glycolysis, mitochondrial metabolism, amino acid metabolism, polyamine synthesis, and lipid metabolism typical of sepsis processes distinctive of a mild disease. Dysregulated metabolites and cytokines/chemokines showed differential correlation patterns in mild and critically ill patients, indicating a crosstalk between metabolism and hyperinflammation. Using multivariate analysis, powerful models for diagnosis and prognosis of COVID-19 induced sepsis were generated, as well as for mortality prediction among septic patients. A metabolite panel made of kynurenine/tryptophan ratio, IL-6, LysoPC a C18:2, and phenylalanine discriminated non-COVID-19 from sepsis patients with an area under the curve (AUC (95%CI)) of 0.991 (0.986-0.995), with sensitivity of 0.978 (0.963-0.992) and specificity of 0.920 (0.890-0.949). The panel that included C10:2, IL-6, NLR, and C5 discriminated mild patients from sepsis patients with an AUC (95%CI) of 0.965 (0.952-0.977), with sensitivity of 0.993(0.984-1.000) and specificity of 0.851 (0.815-0.887). The panel with citric acid, LysoPC a C28:1, neutrophil-lymphocyte ratio (NLR) and kynurenine/tryptophan ratio discriminated severe patients from sepsis patients with an AUC (95%CI) of 0.829 (0.800-0.858), with sensitivity of 0.738 (0.695-0.781) and specificity of 0.781 (0.735-0.827). Septic patients who survived were different from those that did not survive with a model consisting of hippuric acid, along with the presence of Type II diabetes, with an AUC (95%CI) of 0.831 (0.788-0.874), with sensitivity of 0.765 (0.697-0.832) and specificity of 0.817 (0.770-0.865).


Asunto(s)
COVID-19/patología , Metabolómica , Sepsis/diagnóstico , Adulto , Área Bajo la Curva , COVID-19/complicaciones , COVID-19/virología , Quimiocinas/sangre , Citocinas/sangre , Femenino , Humanos , Quinurenina/sangre , Linfocitos/citología , Masculino , Persona de Mediana Edad , Neutrófilos/citología , Curva ROC , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Sepsis/etiología , Índice de Severidad de la Enfermedad , Triptófano/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...