Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Pharmacol ; 83(6): 635-645, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547515

RESUMEN

ABSTRACT: Prepubertal obesity is growing at an alarming rate and is now considered a risk factor for renal injury. Recently, we reported that the early development of renal injury in obese Dahl salt-sensitive (SS) leptin receptor mutant (SS LepR mutant) rats was associated with increased T-cell infiltration and activation before puberty. Therefore, the current study investigated the effect of inhibiting T-cell activation with abatacept on the progression of renal injury in young obese SS LepR mutant rats before puberty. Four-week-old SS and SS LepR mutant rats were treated with IgG or abatacept (1 mg/kg; ip, every other day) for 4 weeks. Abatacept reduced the renal infiltration of T cells by almost 50% in SS LepR mutant rats. Treatment with abatacept decreased the renal expression of macrophage inflammatory protein-3 alpha while increasing IL-4 in SS LepR mutant rats without affecting SS rats. While not having an impact on blood glucose levels, abatacept reduced hyperinsulinemia and plasma triglycerides in SS LepR mutant rats without affecting SS rats. We did not observe any differences in the mean arterial pressure among the groups. Proteinuria was markedly higher in SS LepR mutant rats than in SS rats throughout the study, and treatment with abatacept decreased proteinuria by about 40% in SS LepR mutant rats without affecting SS rats. We observed significant increases in glomerular and tubular injury and renal fibrosis in SS LepR mutant rats versus SS rats, and chronic treatment with abatacept significantly reduced these renal abnormalities in SS LepR mutant rats. These data suggest that renal T-cell activation contributes to the early progression of renal injury associated with prepubertal obesity.


Asunto(s)
Abatacept , Riñón , Obesidad , Ratas Endogámicas Dahl , Receptores de Leptina , Linfocitos T , Animales , Abatacept/farmacología , Obesidad/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Receptores de Leptina/deficiencia , Masculino , Ratas , Progresión de la Enfermedad , Modelos Animales de Enfermedad , Proteinuria/tratamiento farmacológico , Enfermedades Renales/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Maduración Sexual/efectos de los fármacos
2.
Am J Physiol Renal Physiol ; 325(3): F363-F376, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37498548

RESUMEN

Prepubertal obesity is currently an epidemic and is considered as a major risk factor for renal injury. Previous studies have demonstrated that insulin resistance contributes to renal injury in obesity, independent of diabetes. However, studies examining the relationship between insulin resistance and renal injury in obese children are lacking. Recently, we reported that progressive renal injury in Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) rats was associated with insulin resistance before puberty. Therefore, the aim of the present study was to examine whether decreasing insulin resistance with metformin will reduce renal injury in SSLepRmutant rats. Four-wk-old SS and SSLepRmutant rats were separated into the following two groups: 1) vehicle and 2) metformin (300 mg/kg/day) via chow diet for 4 wk. Chronic administration of metformin markedly reduced insulin resistance and dyslipidemia in SSLepRmutant rats. We did not detect any differences in mean arterial pressure between vehicle and metformin-treated SS and SSLepRmutant rats. Proteinuria was significantly greater in SSLepRmutant rats versus SS rats throughout the study, and metformin administration significantly reduced proteinuria in SSLepRmutant rats. At the end of the protocol, metformin prevented the renal hyperfiltration observed in SSLepRmutant rats versus SS rats. Glomerular and tubular injury and renal inflammation and fibrosis were significantly higher in vehicle-treated SSLepRmutant rats versus SS rats, and metformin reduced these parameters in SSLepRmutant rats. These data suggest that reducing insulin resistance with metformin prevents renal hyperfiltration and progressive renal injury in SSLepRmutant rats before puberty and may be therapeutically useful in managing renal injury during prepubertal obesity.NEW & NOTEWORTHY Childhood/prepubertal obesity is a public health concern that is associated with early signs of proteinuria. Insulin resistance has been described in obese children. However, studies investigating the role of insulin resistance during childhood obesity-associated renal injury are limited. This study provides evidence of an early relationship between insulin resistance and renal injury in a rat model of prepubertal obesity. These data also suggest that reducing insulin resistance with metformin may be renoprotective in obese children.


Asunto(s)
Hipertensión , Resistencia a la Insulina , Metformina , Obesidad Infantil , Ratas , Animales , Ratas Endogámicas Dahl , Metformina/farmacología , Obesidad Infantil/complicaciones , Riñón , Proteinuria/prevención & control , Cloruro de Sodio Dietético , Hipertensión/tratamiento farmacológico , Hipertensión/etiología , Presión Sanguínea
3.
Am J Physiol Renal Physiol ; 325(1): F87-F98, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167270

RESUMEN

Recently, we have reported that the early progression of proteinuria in the obese Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) strain was associated with increased renal macrophage infiltration before puberty. Macrophages can be divided into two distinct phenotypes: M1 (proinflammatory) and M2 (anti-inflammatory). Moreover, previous studies have demonstrated that interleukin (IL)-25 converts resting macrophages and M1 into M2. Therefore, the present study examined whether treatment with IL-25 would reduce the early progression of renal injury in SSLepRmutant rats by increasing renal M2. We also investigated the impact of IL-25 on M2 subtypes: M2a (wound healing/anti-inflammatory), M2b (immune mediated/proinflammatory), M2c (regulatory/anti-inflammatory), and M2d (tumor associated/proangiogenic). Four-wk-old SS and SSLepRmutant rats were treated with either control (IgG) or IL-25 (1 µg/day ip every other day) for 4 wk. The kidneys from SSLepRmutant rats displayed progressive proteinuria and renal histopathology versus SS rats. IL-25 treatment had no effect on these parameters in SS rats. However, in the SSLepRmutant strain, proteinuria was markedly reduced after IL-25 treatment. Chronic treatment with IL-25 significantly decreased glomerular and tubular injury and renal fibrosis in the SSLepRmutant strain. Although the administration of IL-25 did not change total renal macrophage infiltration in both SS and SSLepRmutant rats, IL-25 increased M2a by >50% and reduced M1 by 60% in the kidneys of SSLepRmutant rats. Overall, these data indicate that IL-25 reduces the early progression of renal injury in SSLepRmutant rats by inducing M2a and suppressing M1 and suggest that IL-25 may be a therapeutic target for renal disease associated with obesity. NEW & NOTEWORTHY For the past few decades, immune cells and inflammatory cytokines have been demonstrated to play an important role in the development of renal disease. The present study provides strong evidence that interleukin-25 slows the early progression of renal injury in obese Dahl salt-sensitive rats before puberty by increasing systemic anti-inflammatory cytokines and renal M2a macrophages.


Asunto(s)
Interleucina-17 , Enfermedades Renales , Ratas , Animales , Ratas Endogámicas Dahl , Interleucina-17/farmacología , Riñón/patología , Enfermedades Renales/patología , Proteinuria/patología , Obesidad/complicaciones , Obesidad/patología , Cloruro de Sodio Dietético/farmacología , Macrófagos/patología
4.
J Pharmacol Exp Ther ; 384(3): 445-454, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36507846

RESUMEN

Recently, we reported that the early progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats was associated with increased macrophage inflammatory protein 3-α (MIP3α) expression prior to puberty. Therefore, this study tested the hypothesis that MIP3α plays a role in recruiting immune cells, thereby triggering renal inflammation and early progressive renal injury in SSLepRmutant rats prior to puberty. Four-week-old Dahl salt-sensitive (SS) and SSLepRmutant rats either served as control (IgG; intraperitoneal, every other day) or received MIP3α-neutralizing antibody (MNA; 100 µg/kg) for 4 weeks. MNA reduced circulating and renal MIP3α levels and proinflammatory immune cells by 50%. Although MNA treatment did not affect blood glucose and plasma cholesterol levels, MNA markedly decreased insulin resistance and triglyceride levels in SSLepRmutant rats. We observed no differences in mean arterial pressure (MAP) between SS and SSLepRmutant rats, and MNA had no effect on MAP in either strain. Proteinuria was significantly increased in SSLepRmutant rats versus SS rats over the course of the study. Treatment with MNA markedly decreased proteinuria in SSLepRmutant rats while not affecting SS rats. Also, MNA decreased glomerular and tubular injury and renal fibrosis in SSLepRmutant rats while not affecting SS rats. Overall, these data indicate that MIP3α plays an important role in renal inflammation during the early progression of renal injury in obese SSLepRmutant rats prior to puberty. These data also suggest that MIP3α may be a novel therapeutic target to inhibit insulin resistance and prevent progressive proteinuria in obese children. SIGNIFICANCE STATEMENT: Childhood obesity is increasing at an alarming rate and is now being associated with renal disease. Although most studies have focused on the mechanisms of renal injury associated with adult obesity, few studies have examined the mechanisms of renal injury involved during childhood obesity. In the current study, we observed that the progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant rats was associated with an increase in MIP3α, a chemokine, before puberty, and inhibition of MIP3α markedly reduced renal injury.


Asunto(s)
Hipertensión , Resistencia a la Insulina , Enfermedades Renales , Obesidad Infantil , Ratas , Animales , Ratas Endogámicas Dahl , Obesidad Infantil/metabolismo , Receptores de Leptina/metabolismo , Receptores de Leptina/uso terapéutico , Riñón , Enfermedades Renales/metabolismo , Proteinuria/metabolismo , Cloruro de Sodio Dietético/metabolismo , Inflamación/metabolismo , Hipertensión/tratamiento farmacológico , Presión Sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...