Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(10): 1213-1228, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37669212

RESUMEN

We report on the first experimental demonstration of five self-sustaining feedback oscillators referenced to a single multimode resonator, using piezoelectric aluminum nitride on silicon (AlN/Si) microelectromechanical systems (MEMS) technology. Integrated piezoelectric transduction enables efficient readout of five resonance modes of the same AlN/Si MEMS resonator, at 10, 30, 65, 95, and 233 MHz with quality ( Q ) factors of 18 600, 4350, 4230, 2630, and 2138, respectively, at room temperature. Five stable self-sustaining oscillators are built, each referenced to one of these high- Q modes, and their mode-dependent phase noise and frequency stability (Allan deviation) are measured and analyzed. The 10, 30, 65, 95, and 233 MHz oscillators exhibit low phase noise of -116, -100, -105, -106, and -92 dBc/Hz at 1 kHz offset frequency, respectively. The 65 MHz oscillator yields the Allan deviation of 4×10-9 and 2×10-7 at 1 and 1000 s averaging time, respectively. The 10 MHz oscillator's low phase noise holds strong promise for clock and timing applications. The five oscillators' overall promising performance suggests suitability for multimode resonant sensing and real-time frequency tracking. This work also elucidates mode dependency in oscillator noise and stability, one of the key attributes of mode-engineerable resonators.

2.
J Soc Econ Dev ; : 1-20, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-37359357

RESUMEN

A four-sector competitive general equilibrium model has been developed with both male and female labour in presence of capital market distortion to analyse the effect of social transition on female labour force participation and gender-based wage inequality. The analysis finds that although gender wage inequality worsens in the existing structure, the consequence on female participation in the workforce depends on the stage of social transition. While it falls in the early stages, it begins to rise once a certain critical level of transition is crossed. Finally, we have advocated in favour of a policy that can effectively speed up the process of social transition thereby gender empowerment.

3.
Sci Rep ; 13(1): 5546, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37015953

RESUMEN

The international postal network is one of the most widely used methods for correspondence throughout the world. Most postal traffic across the globe consists of legitimate interpersonal, business-consumer, and business-business communications. However, the global postal system is also utilized for criminal activity. In particular, it is often utilized to ship and distribute contraband, including illegal psychoactive drugs such as fentanyl and heroin, to consumers. Existing technological solutions are capable of identifying synthetic opioids and other illegal drugs within packages, but are accompanied by several disadvantages that make them unsuitable for large-scale authentication of international mail traffic. This paper presents a novel method for non-invasive authentication of mail packages that overcomes these challenges. The approach uses nuclear quadrupole resonance (NQR) spectroscopy to detect and quantify the presence of known active pharmaceutical ingredients (APIs) within the package. It has been experimentally demonstrated using a bench top prototype. Test results from a variety of package types demonstrate the effectiveness of the proposed authentication approach.


Asunto(s)
Heroína , Servicios Postales , Espectroscopía de Resonancia Magnética/métodos , Analgésicos Opioides , Tecnología
4.
J Magn Reson ; 348: 107367, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36689787

RESUMEN

Low-field NMR has seen growing interest in recent years, especially for portable applications. The lower homogeneity magnets used for portable applications require short RF pulses to ensure enough transmit bandwidth to excite the sample volume and also support short echo periods. Furthermore, the preferred use of a high-Q coil to improve signal-to-noise ratio (SNR) prolongs the pulse transients. Thus, at such low Larmor frequencies, the excitation pulse transients become comparable or longer than the pulse length, such that the transmit bandwidth begins to limit measurement SNR. This paper describes the design of a pulsed current-mode class-D power (PCMCD) transmitter that addresses this issue by generating high power in a tuned sample coil while maintaining short transients, thus resulting in high output bandwidth. The transmitter also uses a charge recycling mechanism to maximize power efficiency for RF train excitation, which also results in faster pulse repetition rate and reduces allowable echo time. Experimental results from a small form-factor PCMCD transmitter are presented. This design generates a peak RF power of 240 W into a 9.16 µH coil at 4 MHz while operating off a single 12 V power supply. NMR measurement results using the transmitter are also described, showing minimum achievable echo time of 70 µs and 25 µs depending on the transmitter mode of operation.

5.
Elife ; 112022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317871

RESUMEN

A morbidostat is a bioreactor that uses antibiotics to control the growth of bacteria, making it well-suited for studying the evolution of antibiotic resistance. However, morbidostats are often too expensive to be used in educational settings. Here we present a low-cost morbidostat called the EVolutionary biorEactor (EVE) that can be built by students with minimal engineering and programming experience. We describe how we validated EVE in a real classroom setting by evolving replicate Escherichia coli populations under chloramphenicol challenge, thereby enabling students to learn about bacterial growth and antibiotic resistance.


Asunto(s)
Farmacorresistencia Bacteriana , Infecciones por Escherichia coli , Humanos , Escherichia coli , Antibacterianos/farmacología , Infecciones por Escherichia coli/microbiología , Reactores Biológicos
6.
Sci Rep ; 11(1): 19910, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620887

RESUMEN

Face masks are a primary preventive measure against airborne pathogens. Thus, they have become one of the keys to controlling the spread of the COVID-19 virus. Common examples, including N95 masks, surgical masks, and face coverings, are passive devices that minimize the spread of suspended pathogens by inserting an aerosol-filtering barrier between the user's nasal and oral cavities and the environment. However, the filtering process does not adapt to changing pathogen levels or other environmental factors, which reduces its effectiveness in real-world scenarios. This paper addresses the limitations of passive masks by proposing ADAPT, a smart IoT-enabled "active mask". This wearable device contains a real-time closed-loop control system that senses airborne particles of different sizes near the mask by using an on-board particulate matter (PM) sensor. It then intelligently mitigates the threat by using mist spray, generated by a piezoelectric actuator, to load nearby aerosol particles such that they rapidly fall to the ground. The system is controlled by an on-board micro-controller unit that collects sensor data, analyzes it, and activates the mist generator as necessary. A custom smartphone application enables the user to remotely control the device and also receive real-time alerts related to recharging, refilling, and/or decontamination of the mask before reuse. Experimental results on a working prototype confirm that aerosol clouds rapidly fall to the ground when the mask is activated, thus significantly reducing PM counts near the user. Also, usage of the mask significantly increases local relative humidity levels.


Asunto(s)
COVID-19/prevención & control , Exposición por Inhalación/prevención & control , Máscaras , Material Particulado/aislamiento & purificación , Dispositivos de Protección Respiratoria , SARS-CoV-2/aislamiento & purificación , Aerosoles/aislamiento & purificación , Microbiología del Aire , Diseño de Equipo , Filtración/instrumentación , Humanos , Aplicaciones Móviles , Tamaño de la Partícula , Materiales Inteligentes/química , Teléfono Inteligente
7.
Foods ; 10(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34574342

RESUMEN

Dyeing vegetables with harmful compounds has become an alarming public health issue over the past few years. Excessive consumption of these dyed vegetables can cause severe health hazards, including cancer. Copper sulfate, malachite green, and Sudan red are some of the non-food-grade dyes widely used on vegetables by untrusted entities in the food supply chain to make them look fresh and vibrant. In this study, the presence and quantity of dye-based adulteration in vegetables are determined by applying 1H-nuclear magnetic resonance (NMR) relaxometry. The proposed technique was validated by treating some vegetables in-house with different dyes and then soaking them in various solvents. The resulting solutions were collected and analyzed using NMR relaxometry. Specifically, the effective transverse relaxation time constant, T2,eff, of each solution was estimated using a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. Finally, the estimated time constants (i.e., measured signatures) were compared with a library of existing T2,eff data to detect and quantify the presence of unwanted dyes. The latter consists of data-driven models of transverse decay times for various concentrations of each water-soluble dye. The time required to analyze each sample using the proposed approach is dye-dependent but typically no longer than a few minutes. The analysis results can be used to generate warning flags if the detected dye concentrations violate widely accepted standards for food dyes. The proposed low-cost detection approach can be used in various stages of a produce supply chain, including consumer household.

8.
Rev Sci Instrum ; 92(6): 064708, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243569

RESUMEN

Coaxial cables commonly used to connect radio-frequency (RF) coil arrays with the control console of an MRI scanner are susceptible to electromagnetic coupling. As the number of RF channels increases, such coupling could result in severe heating and pose a safety concern. Non-conductive transmission solutions based on fiber-optic cables are considered to be one of the alternatives but are limited by the high dynamic range (>80 dB) of typical MRI signals. A new digital fiber-optic transmission system based on delta-sigma modulation (DSM) is developed to address this problem. A DSM-based optical link is prototyped using off-the-shelf components and bench-tested at different signal oversampling rates (OSRs). An end-to-end dynamic range (DR) of 81 dB, which is sufficient for typical MRI signals, is obtained over a bandwidth of 200 kHz, which corresponds to OSR = 50. A fully integrated custom fourth-order continuous-time DSM is designed in 180 nm CMOS technology to enable transmission of full-bandwidth MRI signals (up to 1 MHz) with an adequate DR. Initial electrical test results from this custom chip are also presented.


Asunto(s)
Imagen por Resonancia Magnética , Tecnología de Fibra Óptica , Ondas de Radio
9.
Chemphyschem ; 22(20): 2128-2137, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34324780

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy usually requires high magnetic fields to create spectral resolution among different proton species. Although proton signals can also be detected at low fields the spectrum exhibits a single line if J-coupling is stronger than chemical shift dispersion. In this work, we demonstrate that the spectra can nevertheless be acquired in this strong-coupling regime using a novel pulse sequence called spin-lock induced crossing (SLIC). This techniques probes energy level crossings induced by a weak spin-locking pulse and produces a unique J-coupling spectrum for most organic molecules. Unlike other forms of low-field J-coupling spectroscopy, our technique does not require the presence of heteronuclei and can be used for most compounds in their native state. We performed SLIC spectroscopy on a number of small molecules at 276 kHz and 20.8 MHZ and show that the simulated SLIC spectra agree well with measurements.

10.
Sci Rep ; 11(1): 12207, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108501

RESUMEN

Automatic recognition of unique characteristics of an object can provide a powerful solution to verify its authenticity and safety. It can mitigate the growth of one of the largest underground industries-that of counterfeit goods-flowing through the global supply chain. In this article, we propose the novel concept of material biometrics, in which the intrinsic chemical properties of structural materials are used to generate unique identifiers for authenticating individual products. For this purpose, the objects to be protected are modified via programmable additive manufacturing of built-in chemical "tags" that generate signatures depending on their chemical composition, quantity, and location. We report a material biometrics-enabled manufacturing flow in which plastic objects are protected using spatially-distributed tags that are optically invisible and difficult to clone. The resulting multi-bit signatures have high entropy and can be non-invasively detected for product authentication using [Formula: see text]Cl nuclear quadrupole resonance (NQR) spectroscopy.

11.
J Magn Reson ; 327: 106975, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33873092

RESUMEN

This paper provides a detailed analysis of three common NMR probe circuits (untuned, tuned, and impedance-matched) and studies their effects on multi-pulse experiments, such as those based on the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The magnitude of probe dynamics effects on broadband refocusing pulses are studied as a function of normalized RF bandwidth. Finally, the probe circuit models are integrated with spin dynamics simulations to design hardware-specific RF excitation and refocusing pulses for optimizing user-specified metrics such as signal-to-noise ratio (SNR) in grossly inhomogeneous fields. Preliminary experimental results on untuned probes are also presented.

12.
Front Neurosci ; 15: 623316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679305

RESUMEN

This paper describes a bio-inspired radio frequency (RF) scene analysis system based on cross-correlating the outputs of two single-chip RF spectrum analyzers. The latter are implemented using digitally-programmable "RF cochlea" chips (in 65 nm CMOS) that integrate a transmission-line active cochlear model, consisting of 50 parallel exponentially-spaced stages for analyzing the radio spectrum from 1.0 to 8.3 GHz, together with an output encoding network. The encoders convert the analog outputs of all cochlear stages into parallel delta-sigma (Δ-Σ) modulated digital signals for real-time demodulation and analysis by a digital back-end processor. These outputs can also be multiplied with each other to generate cochlear correlation matrices (known as cross-correlograms). Simulation results demonstrate the use of cross-correlograms for wide-range time-delay estimation and real-time multi-source localization at different frequencies and input signal-to-noise (SNR) ratios. Over-the-air measurement results from an experimental two-channel RF scene analysis prototype confirm the use of such time-delay estimates, which are analogous to interaural time differences (ITDs) in the auditory system, for azimuthal source localization at 3.4 GHz. In addition, differences in received signal strength at the two cochleas, which are analogous to interaural level differences (ILD) in biology, are also used to localize RF sources.

13.
IEEE Trans Biomed Circuits Syst ; 15(2): 235-247, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33656998

RESUMEN

This paper studies the fundamental trade-offs between power transfer efficiency (PTE) and spectral efficiency that occur during simultaneous power and data transfer through near-field inductive links. A mathematical analysis is used to establish the relationship between PTE and channel capacity as a function of link parameters such as coupling coefficient ( k), load resistance, and surrounding environment. The analysis predicts that the optimum trade-off between power and data transfer is particularly dependent on k, which is a monotonically-decreasing function of axial distance ( d) between the coils. Real-time adaptation of the link parameters (such as load resistance and modulation type) is proposed to automatically optimize the power-data trade-off over a wide range of distances and coupling coefficients. A bench-top prototype of such an adaptive link is demonstrated at a center frequency of 13.56 MHz. The prototype uses an ultrasound transducer to measure d with accuracy  mm, and uses this information to autonomously optimize both data rate (up to  âˆ¼ 50 Mbps) and PTE (up to  âˆ¼ 25%) as the coil-coil distance varies within the 4-15 mm range.


Asunto(s)
Prótesis e Implantes , Tecnología Inalámbrica , Suministros de Energía Eléctrica , Diseño de Equipo
14.
J Phys Condens Matter ; 32(7): 075601, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-31665705

RESUMEN

We investigate the magnetic field variation of the thermally activated flux flow resistivity, ρ TAFF and flux flow critical current density, J c, in a weakly pinned thin film of the amorphous superconductor a-MoGe, where vortices are in a fluid state over a large range of magnetic fields. We show that both quantities can be understood within the framework of collective pinning theory. In particular, our results demonstrate that a 'peak effect' can arise at the order-disorder transition of the vortex lattice even when both the ordered and disordered states are vortex fluids, such as the boundary between a hexatic vortex fluid and an isotropic vortex liquid.

15.
IEEE Trans Biomed Circuits Syst ; 14(2): 305-318, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31831437

RESUMEN

The paper presents the design and validation of body-conformal active ultrasound patches with integrated imaging and modulation modalities for image-guided neural therapy. A mechanically-flexible linear 64-element array of piezoelectric transducers with a resonance frequency of 5 MHz was designed for nerve localization. A second 8-element array using larger elements was integrated on the wearable probe for low intensity focused ultrasound neuromodulation at a resonance frequency of 1.3 MHz. Full-wave simulations were used to model the flexible arrays and estimate their generated pressure profiles. A focal depth of 10-20 mm was assumed for beamforming and focusing to support modulation of the vagus, tibial, and other nerves. A strain sensor integrated on the probe provides patient-specific feedback information on array curvature for real-time optimization of focusing and image processing. Each patch also includes high voltage (HV) multiplexers, transmit/receive switches, and pre-amplifiers that simplify connectivity and also improve the signal-to-noise ratio (SNR) of the received echo signals by  âˆ¼ 5 dB. Experimental results from a flexible prototype show a sensitivity of 80 kPa/V with  âˆ¼ 3 MHz bandwidth for the modulation and 20 kPa/V with  âˆ¼ 6 MHz bandwidth for the imaging array. An algorithm for accurate and automatic localization of targeted nerves based on using nearby blood vessels (e.g., the carotid artery) as image markers is also presented.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Señales Asistido por Computador/instrumentación , Estimulación Eléctrica Transcutánea del Nervio/métodos , Terapia por Ultrasonido/métodos , Ultrasonografía/métodos , Algoritmos , Humanos , Cuello/diagnóstico por imagen , Cuello/fisiología , Estimulación Eléctrica Transcutánea del Nervio/instrumentación , Terapia por Ultrasonido/instrumentación , Ultrasonografía/instrumentación
16.
J Magn Reson ; 311: 106660, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31865184

RESUMEN

Nuclear quadrupole resonance (NQR) is commonly used to characterize solid materials containing quadrupolar nuclei. For example, NQR is a promising technique for detecting plastic explosives and other forbidden substances as well as for authenticating pharmaceutical products. Spatially-resolved NQR measurements are of particular interest for enabling automated sample positioning, evaluation of sample heterogeneity, and chemometric authentication of objects. This paper proposes a rapid "single-shot" method for spatially-resolved NQR with the potential to benefit such applications. The proposed method takes advantage of the fact that certain NQR relaxation rates are field-dependent: the observed field dependence is used to convert relaxation time distributions measured in a static field gradient (estimated via Laplace inversion of time-domain data) into spatial distributions. The method was validated using 35Cl and 37Cl NQR of sodium chlorate and other compounds. Effective spatial resolution was also improved by using machine learning (ML) to classify the measured spatial distributions. In particular, experimental results demonstrate accurate ML-based classification of 3D-printed objects containing arbitrary binary distributions of sodium chlorate. Such distributions can thus be used as NQR-based "embedded barcodes" for authenticating high-value objects.

17.
IEEE Trans Biomed Circuits Syst ; 13(6): 1494-1505, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31634844

RESUMEN

Point-of-care screening for hemodialysis vascular access dysfunction requires tools that are objective and efficient. Listening for bruits during physical exam is a subjective examination which can detect stenosis (vascular narrowing) when properly performed. Phonoangiograms (PAGs)-mathematical analysis of bruits-increases the objectivity and sensitivity and permits quantification of stenosis location and degree of stenosis (DOS). This work describes a flexible and body-conformal multi-channel sensor and associated signal processing methods for automated DOS characterization of vascular access. The sensor used an array of thin-film PVDF microphones integrated on polyimide to record bruits at multiple sites along a vascular access. Nonlinear signal processing was used to extract spectral features, and cardiac cycle segmentation was used to improve sensitivity. PAG signal processing algorithms to detect stenosis location and severity are also presented. Experimental results using microphone arrays on a vascular access phantom demonstrated that stenotic lesions were detected within 1 cm of the actual location and graded to three levels (mild, moderate, or severe). Additional PAG features were also used to define a simple binary classifier aimed at patients with failing vascular accesses. The classifier achieved 90% accuracy, 92% specificity, and 91% sensitivity at detecting stenosis greater than 50%. These results suggest that point-of-care screening using microphone arrays can identify at-risk patients using automated signal analysis.


Asunto(s)
Angiografía/instrumentación , Vasos Sanguíneos/fisiología , Angiografía/métodos , Área Bajo la Curva , Constricción Patológica/diagnóstico , Electrodos , Humanos , Fallo Renal Crónico/patología , Sistemas de Atención de Punto , Curva ROC , Diálisis Renal , Procesamiento de Señales Asistido por Computador , Sonido
18.
J Magn Reson ; 308: 106591, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31546179

RESUMEN

Single-sided MRI sensors allow the imaging of samples that are larger than the magnet. Thus, they enable truly portable imagers with potential applications in medicine, quality assurance (QA), agriculture, material science, and other fields. However, despite recent advancements, single-sided MRI systems are relatively uncommon. This is partially due to the limited number of commercial products. Also, current implementations often require large and/or complex magnet arrays which require machining techniques such as milling or drilling. These techniques must be performed to tight tolerances to ensure accuracy of the B0 field. Furthermore, these systems generally have hand-wound RF or gradient coils that are not trivial to construct. The main goals of this work are to reduce the size of single-sided MRI sensors while simultaneously making them more accessible for others to build. To this end, we present a hand-held, single-sided, MRI sensor that is constructed using an easy-to-assemble magnet array, a 3D-printed housing, and printed circuit boards (PCBs) that contain the RF coil, gradient coils, and matching network. By implementing all coils directly on PCBs, the geometry can be easily optimized and then manufactured at low cost. Both spin density-weighted and T1-weighted images of various samples are presented to demonstrate the capabilities of the proposed sensor.

19.
J Magn Reson ; 303: 82-90, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31026669

RESUMEN

In this work, a dynamically tunable B0 field is used to perform variable-field NMR. The system consists of an array of electropermanent AlNiCo-5 magnets whose magnetizations are individually programmed using pulse-power control. This design allows the field strength to be varied for field-dispersion measurements. An ultra-broadband front-end is utilized that maintains efficient power transmission over a broad range of frequencies for robust operation without probe tuning. We perform T1-T2 correlation measurements at various B0 field strengths (0.5-2 MHz) and demonstrate discrimination of different dairy products. We observe variation in the frequency dependence of the proton spin-lattice relaxation for the different products as a function of the degree of protein hydration. This variable-field technique provides a low-cost alternative to fast field-cycling NMR and could open possibilities for novel contrast measurements and spatial encoding in magnetic resonance imaging.

20.
Phys Rev Lett ; 122(4): 047001, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768342

RESUMEN

The hexatic fluid refers to a phase in between a solid and a liquid that has short-range positional order but quasi-long-range orientational order. In the celebrated theory of Berezinskii, Kosterlitz, and Thouless and subsequently refined by Halperin, Nelson, and Young, it was predicted that a two-dimensional hexagonal solid can melt in two steps: first, through a transformation from a solid to a hexatic fluid, which retains quasi-long-range orientational order; and then from a hexatic fluid to an isotropic liquid. In this Letter, using a combination of real space imaging and transport measurements, we show that the two-dimensional vortex lattice in an a-MoGe thin film follows this sequence of melting as the magnetic field is increased. Identifying the signatures of various transitions on the bulk transport properties of the superconductor, we construct a vortex phase diagram for a two-dimensional superconductor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...