Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Am J Ophthalmol ; 258: 183-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37972748

RESUMEN

PURPOSE: To report the genetic etiology of Lisch epithelial corneal dystrophy (LECD). DESIGN: Multicenter cohort study. METHODS: A discovery cohort of 27 individuals with LECD from 17 families, including 7 affected members from the original LECD family, 6 patients from 2 new families and 14 simplex cases, was recruited. A cohort of 6 individuals carrying a pathogenic MCOLN1 (mucolipin 1) variant was reviewed for signs of LECD. Next-generation sequencing or targeted Sanger sequencing were used in all patients to identify pathogenic or likely pathogenic variants and penetrance of variants. RESULTS: Nine rare heterozygous MCOLN1 variants were identified in 23 of 27 affected individuals from 13 families. The truncating nature of 7 variants and functional testing of 1 missense variant indicated that they result in MCOLN1 haploinsufficiency. Importantly, in the homozygous and compound-heterozygous state, 4 of 9 LECD-associated variants cause the rare lysosomal storage disorder mucolipidosis IV (MLIV). Autosomal recessive MLIV is a systemic disease and comprises neurodegeneration as well as corneal opacity of infantile-onset with epithelial autofluorescent lysosomal inclusions. However, the 6 parents of 3 patients with MLIV confirmed to carry pathogenic MCOLN1 variants did not have the LECD phenotype, suggesting MCOLN1 haploinsufficiency may be associated with reduced penetrance and variable expressivity. CONCLUSIONS: MCOLN1 haploinsufficiency is the major cause of LECD. Based on the overlapping clinical features of corneal epithelial cells with autofluorescent inclusions reported in both LECD and MLIV, it is concluded that some carriers of MCOLN1 haploinsufficiency-causing variants present with LECD.


Asunto(s)
Distrofias Hereditarias de la Córnea , Mucolipidosis , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Potencial de Receptor Transitorio/genética , Estudios de Cohortes , Mucolipidosis/diagnóstico , Mucolipidosis/genética , Mucolipidosis/patología , Distrofias Hereditarias de la Córnea/diagnóstico , Distrofias Hereditarias de la Córnea/genética
2.
Harefuah ; 162(6): 344-351, 2023 Jun.
Artículo en Hebreo | MEDLINE | ID: mdl-37394435

RESUMEN

INTRODUCTION: Inborn-Errors of Metabolism (IEM) are genetic disorders resulting from mutations in genes encoding proteins involved in biochemical-metabolic pathways. However, some IEMs lack specific biochemical markers. Early incorporation of next-generation-sequencing (NGS) including whole exome sequencing (WES) into the diagnostic algorithm of IEMs herein provided, increases diagnostic accuracy, permits genetic counseling and improves therapeutic options. This is exemplified by diseases affecting aminoacyl-tRNA synthetases (ARSs), enzymes involved in protein translation. Recent studies showed that supplementing amino-acids to cell-culture and patients with ARSs deficiencies resulted in improvement of biochemical and clinical parameters, respectively.


Asunto(s)
Errores Innatos del Metabolismo , Humanos , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/terapia , Mutación , Biomarcadores , Asesoramiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
J Med Genet ; 60(11): 1133-1141, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37460201

RESUMEN

BACKGROUND: SUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1α (HP1α). METHODS: We performed exome sequencing and segregation studies in a family with several infants presenting with an unidentified syndrome. RNA and protein expression studies were performed in fibroblasts available from one subject. RESULTS: We identified a kindred with four affected subjects presenting with a spectrum of findings including congenital arthrogryposis, no achievement of developmental milestones, early respiratory failure, neutropenia and recurrent infections. All died within four months after birth. Exome sequencing identified a homozygous stop gain variant in SENP7 c.1474C>T; p.(Gln492*) as the probable aetiology. The proband's fibroblasts demonstrated decreased mRNA expression. Protein expression studies showed significant protein dysregulation in total cell lysates and in the chromatin fraction. We found that HP1α levels as well as different histones and H3K9me3 were reduced in patient fibroblasts. These results support previous studies showing interaction between SENP7 and HP1α, and suggest loss of SENP7 leads to reduced heterochromatin condensation and subsequent aberrant gene expression. CONCLUSION: Our results suggest a critical role for SENP7 in nervous system development, haematopoiesis and immune function in humans.

4.
Front Genet ; 14: 1135267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999056

RESUMEN

Introduction: Hereditary orotic aciduria is an extremely rare, autosomal recessive disease caused by deficiency of uridine monophosphate synthase. Untreated, affected individuals may develop refractory megaloblastic anemia, neurodevelopmental disabilities, and crystalluria. Newborn screening has the potential to identify and enable treatment of affected individuals before they become significantly ill. Methods: Measuring orotic acid as part of expanded newborn screening using flow injection analysis tandem mass spectrometry. Results: Since the addition of orotic acid measurement to the Israeli routine newborn screening program, 1,492,439 neonates have been screened. The screen has identified ten Muslim Arab newborns that remain asymptomatic so far, with DBS orotic acid elevated up to 10 times the upper reference limit. Urine organic acid testing confirmed the presence of orotic aciduria along with homozygous variations in the UMPS gene. Conclusion: Newborn screening measuring of orotic acid, now integrated into the routine tandem mass spectrometry panel, is capable of identifying neonates with hereditary orotic aciduria.

5.
J Inherit Metab Dis ; 46(2): 273-285, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36522796

RESUMEN

Peroxisomes are essential organelles involved in lipid metabolisms including plasmalogen biosynthesis and ß-oxidation of very long-chain fatty acids. Peroxisomes proliferate by the growth and division of pre-existing peroxisomes. The peroxisomal membrane is elongated by Pex11ß and then divided by the dynamin-like GTPase, DLP1 (also known as DRP1 encoded by DNM1L gene), which also functions as a fission factor for mitochondria. Nucleoside diphosphate kinase 3 (NME3) localized in both peroxisomes and mitochondria generates GTP for DLP1 activity. Deficiencies of either of these factors induce abnormal morphology of peroxisomes and/or mitochondria, and are associated with central nervous system dysfunction. To investigate whether the impaired division of peroxisomes affects lipid metabolisms, we assessed the phospholipid composition of cells lacking each of the different division factors. In fibroblasts from the patients deficient in DLP1, NME3, or Pex11ß, docosahexaenoic acid (DHA, C22:6)-containing phospholipids were found to be decreased. Conversely, the levels of several fatty acids such as arachidonic acid (AA, C20:4) and oleic acid (C18:1) were elevated. Mouse embryonic fibroblasts from Drp1- and Pex11ß-knockout mice also showed a decrease in the levels of phospholipids containing DHA and AA. Collectively, these results suggest that the dynamics of organelle morphology exert marked effects on the fatty acid composition of phospholipids.


Asunto(s)
Ácidos Docosahexaenoicos , Peroxisomas , Animales , Ratones , Ácidos Docosahexaenoicos/metabolismo , Dinaminas/metabolismo , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Morfogénesis , Nucleósido Difosfato Quinasas NM23/metabolismo , Peroxisomas/metabolismo , Fosfolípidos/metabolismo
6.
J Inherit Metab Dis ; 46(2): 232-242, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36515074

RESUMEN

Galactosemia is an inborn disorder of carbohydrate metabolism of which early detection can prevent severe illness. Although the assay for galactose-1-phosphate uridyltransferase (GALT) enzyme activity has been available since the 1960s, many issues prevented it from becoming universal. In order to develop the Israeli newborn screening pilot algorithm for galactosemia, flow injection analysis tandem mass spectrometry measurement of galactose-1-phosphate in archived dried blood spots from newborns with classical galactosemia, galactosemia variants, epimerase deficiency, and normal controls, was conducted. Out of 431 330 newborns screened during the pilot study (30 months), two with classical galactosemia and four with epimerase deficiency were identified and confirmed. Five false positives and no false negatives were recorded. Following this pilot study, the Israeli final and routine newborn screening algorithm, as recommended by the Advisory Committee to the National Newborn Screening Program, now consists of galactose-1-phosphate measurement integrated into the routine tandem mass spectrometry panel as the first-tier screening test, and GALT enzyme activity as the second-tier performed to identify only newborns suspected to be at risk for classical galactosemia. The GALT enzyme activity cut-off used in the final algorithm was lowered in order to avoid false positives.


Asunto(s)
Galactosemias , Humanos , Recién Nacido , Galactosemias/diagnóstico , Tamizaje Neonatal/métodos , Proyectos Piloto , UTP-Hexosa-1-Fosfato Uridililtransferasa , Racemasas y Epimerasas
7.
Front Genet ; 13: 991721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204321

RESUMEN

Introduction: Vici Syndrome is a rare, severe, neurodevelopmental/neurodegenerative disorder with multi-systemic manifestations presenting in infancy. It is mainly characterized by global developmental delay, seizures, agenesis of the corpus callosum, hair and skin hypopigmentation, bilateral cataract, and varying degrees of immunodeficiency, among other features. Vici Syndrome is caused by biallelic pathogenic variants in EPG5, resulting in impaired autophagy. Thus far, the condition has been reported in less than a hundred individuals. Objective and Methods: We aimed to characterize the clinical and molecular findings in individuals harboring biallelic EPG5 variants, recruited from four medical centers in Israel. Furthermore, we aimed to utilize a machine learning-based tool to assess facial features of Vici syndrome. Results: Eleven cases of Vici Syndrome from five unrelated families, one of which was diagnosed prenatally with subsequent termination of pregnancy, were recruited. A total of five disease causing variants were detected in EPG5: two novel: c.2554-5A>G and c.1461delC; and 3 previously reported: c.3447G>A, c.5993C>G, and c.1007A>G, the latter previously identified in several patients of Ashkenazi-Jewish (AJ) descent. Amongst 140,491 individuals screened by the Dor Yeshorim Program, we show that the c.1007A>G variant has an overall carrier frequency of 0.45% (1 in 224) among AJ individuals. Finally, based on two-dimensional facial photographs of individuals with Vici syndrome (n = 19), a composite facial mask was created using the DeepGestalt algorithm, illustrating facial features typical of this disorder. Conclusion: We report on ten children and one fetus from five unrelated families, affected with Vici syndrome, and describe prenatal and postnatal characteristics. Our findings contribute to the current knowledge regarding the molecular basis and phenotypic features of this rare syndrome. Additionally, the deep learning-based facial gestalt adds to the clinician's diagnostic toolbox and may aid in facilitating identification of affected individuals.

8.
Hum Mol Genet ; 31(24): 4121-4130, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35913762

RESUMEN

The high-affinity copper transporter CTR1 is encoded by CTR1 (SLC31A1), a gene locus for which no detailed genotype-phenotype correlations have previously been reported. We describe identical twin male infants homozygous for a novel missense variant NM_001859.4:c.284 G > A (p.Arg95His) in CTR1 with a distinctive autosomal recessive syndrome of infantile seizures and neurodegeneration, consistent with profound central nervous system copper deficiency. We used clinical, biochemical and molecular methods to delineate the first recognized examples of human CTR1 deficiency. These included clinical phenotyping, brain imaging, assays for copper, cytochrome c oxidase (CCO), and mitochondrial respiration, western blotting, cell transfection experiments, confocal and electron microscopy, protein structure modeling and fetal brain and cerebral organoid CTR1 transcriptome analyses. Comparison with two other critical mediators of cellular copper homeostasis, ATP7A and ATP7B, genes associated with Menkes disease and Wilson disease, respectively, revealed that expression of CTR1 was highest. Transcriptome analyses identified excitatory neurons and radial glia as brain cell types particularly enriched for copper transporter transcripts. We also assessed the effects of Copper Histidinate in the patients' cultured cells and in the patients, under a formal clinical protocol. Treatment normalized CCO activity and enhanced mitochondrial respiration in vitro, and was associated with modest clinical improvements. In combination with present and prior studies, these infants' clinical, biochemical and molecular phenotypes establish the impact of this novel variant on copper metabolism and cellular homeostasis and illuminate a crucial role for CTR1 in human brain development. CTR1 deficiency represents a newly defined inherited disorder of brain copper metabolism.


Asunto(s)
Transportador de Cobre 1 , Cobre , Enfermedades Neurodegenerativas , Convulsiones , Humanos , Masculino , Cobre/metabolismo , Transportador de Cobre 1/genética , Gemelos , Lactante , Mutación Missense , Síndrome , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Convulsiones/diagnóstico , Convulsiones/genética
9.
Pediatr Nephrol ; 37(11): 2725-2732, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35239033

RESUMEN

BACKGROUND: Inborn errors of metabolism (IEM), including organic acidemias and urea cycle defects, are characterized by systemic accumulation of toxic metabolites with deleterious effect on the developing brain. While hemodialysis (HD) is most efficient in clearing IEM-induced metabolic toxins, data regarding its use during the neonatal period is scarce. METHODS: We retrospectively summarize our experience with HD in 20 neonates with IEM-induced metabolic intoxication (seven with maple syrup urine disease, 13 with primary hyperammonia), over a 16-year period, between 2004 and 2020. All patients presented with IEM-induced neurologic deterioration at 48 h to 14 days post-delivery, and were managed with HD in a pediatric intensive care setting. HD was performed through an internal jugular acute double-lumen catheter (6.5-7.0 French), using an AK-200S (Gambro, Sweden) dialysis machine and tubing, with F3 or FXpaed (Fresenius, Germany) dialyzers. RESULTS: Median (interquartile range) age and weight at presentation were 5 (3-8) days and 2830 (2725-3115) g, respectively. Two consecutive HD sessions decreased the mean leucine levels from 2281 ± 631 to 179 ± 91 µmol/L (92.1% reduction) in MSUD patients, and the mean ammonia levels from 955 ± 444 to 129 ± 55 µmol/L (86.5% reduction), in patients with hyperammonemia. HD was uneventful in all patients, and led to marked clinical improvement in 17 patients (85%). Three patients (15%) died during the neonatal period, and four died during long-term follow-up. CONCLUSIONS: Taken together, our results indicate that HD is safe, effective, and life-saving for most neonates with severe IEM-induced metabolic intoxication, when promptly performed by an experienced and multidisciplinary team. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Errores Innatos del Metabolismo , Diálisis Renal , Amoníaco , Niño , Humanos , Recién Nacido , Leucina , Errores Innatos del Metabolismo/complicaciones , Errores Innatos del Metabolismo/terapia , Diálisis Renal/efectos adversos , Diálisis Renal/métodos , Estudios Retrospectivos , Urea
10.
Mol Genet Genomic Med ; 10(1): e1849, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34970863

RESUMEN

BACKGROUND: We aimed to determine the molecular and biochemical basis of an extended highly consanguineous family with multiple children presenting severe congenital hypotonia. METHODS: Clinical investigations, homozygosity mapping, linkage analyses and whole exome sequencing, were performed. mRNA and protein levels were determined. Population screening was followed. RESULTS: We have identified a novel nonsense variant in NGLY1 in two affected siblings, and compound heterozygosity for three novel RYR1 variants in two affected sisters from another nuclear family within the broad pedigree. Population screening revealed a high prevalence of carriers for both diseases. The genetic variants were proven to be pathogenic, as demonstrated by western blot analyses. CONCLUSIONS: Revealing the genetic diagnosis enabled us to provide credible genetic counselling and pre-natal diagnosis to the extended family and genetic screening for this high-risk population. Whole exome/genome sequencing should be the first tier tool for accurate determination of the genetic basis of congenital hypotonia. Two different genetic disorders within a large consanguineous pedigree should be always considered.


Asunto(s)
Hipotonía Muscular , Enfermedades Musculares , Niño , Consanguinidad , Exoma , Familia , Humanos , Hipotonía Muscular/genética , Enfermedades Musculares/genética , Linaje
11.
J Pers Med ; 11(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34834457

RESUMEN

BACKGROUND: Enzyme replacement therapy (ERT) with alglucosidase alfa improves the prospect of patients with infantile-onset Pompe disease (IOPD). However, a progressive decline has been reported. Objective quantification of the response to ERT when assessing newer strategies is warranted. METHODS: This combined retrospective-prospective study assessed the acute and long-term effects of ERT on exercise in IOPD patients. Evaluation included cardiopulmonary exercise testing (CPET), 6-min walking test (6MWT), spirometry, motor function test (GMFM-88) and enzyme blood levels. RESULTS: Thirty-four CPETs (17 pre- and 17 two days-post ERT) over variable follow-up periods were performed in four patients. Two days following ERT, blood enzyme levels increased (median, 1.22 and 10.15 µmol/L/h (p = 0.003)). However, FEV1, FVC and GMFM-88, the median 6MWD and the peak VO2 were unchanged. Long-term evaluations showed stabilization in young patients but progressive deterioration in adolescents. Clinical deterioration was associated with more pronounced deterioration in peak VO2 followed in the decreasing order by 6MWD, FVC and GMFM-88. CONCLUSIONS: The peak VO2 and 6MWD might serve as more sensitive markers to assess clinical deterioration. More studies are needed to clarify the sensitivity of the peak VO2 and 6MWT for quantification of individualized response. This may be important when assessing newer strategies and formulations in IOPD.

12.
Biomedicines ; 9(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34356852

RESUMEN

Classical xanthinuria is a rare autosomal recessive metabolic disorder caused by variants in the XDH (type I) or MOCOS (type II) genes. Thirteen Israeli kindred (five Jewish and eight Arab) and two isolated cases from Germany were studied between the years 1997 and 2013. Four and a branch of a fifth of these families were previously described. Here, we reported the demographic, clinical, molecular and biochemical characterizations of the remaining cases. Seven out of 20 affected individuals (35%) presented with xanthinuria-related symptoms of varied severity. Among the 10 distinct variants identified, six were novel: c.449G>T (p.(Cys150Phe)), c.1434G>A (p.(Trp478*)), c.1871C>G (p.(Ser624*)) and c.913del (p.(Leu305fs*1)) in the XDH gene and c.1046C>T (p.(Thr349Ileu)) and c.1771C>T (p.(Pro591Ser)) in the MOCOS gene. Heterologous protein expression studies revealed that the p.Cys150Phe variant within the Fe/S-I cluster-binding site impairs XDH biogenesis, the p.Thr349Ileu variant in the NifS-like domain of MOCOS affects protein stability and cysteine desulfurase activity, while the p.Pro591Ser and a previously described p.Arg776Cys variant in the C-terminal domain affect Molybdenum cofactor binding. Based on the results of haplotype analyses and historical genealogy findings, the potential dispersion of the identified variants is discussed. As far as we are aware, this is the largest cohort of xanthinuria cases described so far, substantially expanding the repertoire of pathogenic variants, characterizing structurally and functionally essential amino acid residues in the XDH and MOCOS proteins and addressing the population genetic aspects of classical xanthinuria.

13.
Eur J Med Genet ; 64(8): 104249, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34023521

RESUMEN

Inherited liver diseases may present in infancy as cholestatic jaundice progressing to severe hepatic dysfunction. Congenital cytomegalovirus (cCMV) infection may initially involve the liver, yet in otherwise healthy hosts rarely leads to long-term hepatic disease. We report a series of three patients, diagnosed with hereditary liver diseases: progressive familial intrahepatic cholestasis (PFIC) type IV, alpha 1 anti-trypsin deficiency (A1ATD) and Alagille syndrome (ALGS), who were also diagnosed with cCMV infection. All patients were treated with valgancilovir for symptomatic cCMV infection (6-12 months), followed by suppressive dosing in the 2 patients with PFIC and A1ATD. Following 15-24 months of follow-up - the patients with PFIC and A1ATD developed severe liver failure, and the third had ongoing cholestatic disease with stable synthetic function. We propose a significant contribution of cCMV infection to the course of the inherited primary disease, possibly leading to further compromise of the liver. We recommend screening patients with inherited liver disease for cCMV, and considering anti-viral treatment with valganciclovir to delay hepatic disease progression.


Asunto(s)
Síndrome de Alagille/patología , Colestasis Intrahepática/patología , Infecciones por Citomegalovirus/congénito , Deficiencia de alfa 1-Antitripsina/patología , Adulto , Síndrome de Alagille/complicaciones , Síndrome de Alagille/genética , Antivirales/administración & dosificación , Antivirales/uso terapéutico , Colestasis Intrahepática/complicaciones , Colestasis Intrahepática/genética , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/patología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Valganciclovir/administración & dosificación , Valganciclovir/uso terapéutico , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/genética
14.
Pediatr Blood Cancer ; 68(5): e28926, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33533561

RESUMEN

BACKGROUND: Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive autosomal recessive disorder characterized by cachexia, gastrointestinal (GI) dysmotility, ptosis, peripheral neuropathy, and brain magnetic resonance imaging (MRI) white matter changes. Bi-allelic TYMP mutations lead to deficient thymidine phosphorylase (TP) activity, toxic accumulation of plasma nucleosides (thymidine and deoxyuridine), nucleotide pool imbalances, and mitochondrial DNA (mtDNA) instability. Death is mainly due to GI complications: intestinal perforation, peritonitis, and/or liver failure. Based on our previous observations in three patients with MNGIE that platelet infusions resulted in a transient 40% reduction of plasma nucleoside levels, in 2005 we performed the first hematopoietic stem cell transplantation (HSCT) worldwide as a life-long source of TP in a patient with MNGIE. PROCEDURE: HSCT was performed in a total of six patients with MNGIE. The multiple factors involved in the prognosis of this cohort were analyzed and compared to the literature experience. RESULTS: Cell source was bone marrow in five patients and peripheral stem cells in one, all from fully human leukocyte antigen (HLA)-matched related donors, including four who were TYMP mutation carriers. Four of six (66%) survived compared to the 37% survival rate in the literature. Reduced intensity conditioning regimen contributed to secondary graft failure in two patients. Fifteen years post HSCT, the first transplanted patient is seemingly cured. Severe GI symptoms before transplantation were mostly irreversible and were poor prognostic factors. CONCLUSIONS: Allogenic HSCT could constitute a curative therapeutic option for carefully selected, young, presymptomatic, or mildly affected patients. Timing, donor selection, and optimal conditioning protocol are major determinants of outcome. HSCT is inadvisable in patients with advanced MNGIE disease.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/métodos , Seudoobstrucción Intestinal/terapia , Distrofia Muscular Oculofaríngea/terapia , Oftalmoplejía/congénito , Adolescente , Adulto , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Oftalmoplejía/terapia , Linaje , Pronóstico , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
15.
Mol Genet Metab Rep ; 26: 100699, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33457206

RESUMEN

Iron­sulfur clusters (FeSCs) are vital components of a variety of essential proteins, most prominently within mitochondrial respiratory chain complexes I-III; Fe-S assembly and distribution is performed via multi-step pathways. Variants affecting several proteins in these pathways have been described in genetic disorders, including severe mitochondrial disease. Here we describe a Christian Arab kindred with two infants that died due to mitochondrial disorder involving Fe-S containing respiratory chain complexes and a third sibling who survived the initial crisis. A homozygous missense variant in NFS1: c.215G>A; p.Arg72Gln was detected by whole exome sequencing. The NFS1 gene encodes a cysteine desulfurase, which, in complex with ISD11 and ACP, initiates the first step of Fe-S formation. Arginine at position 72 plays a role in NFS1-ISD11 complex formation; therefore, its substitution with glutamine is expected to affect complex stability and function. Interestingly, this is the only pathogenic variant ever reported in the NFS1 gene, previously described once in an Old Order Mennonite family presenting a similar phenotype with intra-familial variability in patient outcomes. Analysis of datasets from both populations did not show a common haplotype, suggesting this variant is a recurrent de novo variant. Our report of the second case of NFS1-related mitochondrial disease corroborates the pathogenicity of this recurring variant and implicates it as a hot-spot variant. While the genetic resolution allows for prenatal diagnosis for the family, it also raises critical clinical questions regarding follow-up and possible treatment options of severely affected and healthy homozygous individuals with mitochondrial co-factor therapy or cysteine supplementation.

16.
J Inherit Metab Dis ; 44(2): 376-387, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32898308

RESUMEN

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disease caused by TYMP mutations and thymidine phosphorylase (TP) deficiency. Thymidine and deoxyuridine accumulate impairing the mitochondrial DNA maintenance and integrity. Clinically, patients show severe and progressive gastrointestinal and neurological manifestations. The onset typically occurs in the second decade of life and mean age at death is 37 years. Signs and symptoms of MNGIE are heterogeneous and confirmatory diagnostic tests are not routinely performed by most laboratories, accounting for common misdiagnosis. Factors predictive of progression and appropriate tests for monitoring are still undefined. Several treatment options showed promising results in restoring the biochemical imbalance of MNGIE. The lack of controlled studies with appropriate follow-up accounts for the limited evidence informing diagnostic and therapeutic choices. The International Consensus Conference (ICC) on MNGIE, held in Bologna, Italy, on 30 March to 31 March 2019, aimed at an evidence-based consensus on diagnosis, prognosis, and treatment of MNGIE among experts, patients, caregivers and other stakeholders involved in caring the condition. The conference was conducted according to the National Institute of Health Consensus Conference methodology. A consensus development panel formulated a set of statements and proposed a research agenda. Specifically, the ICC produced recommendations on: (a) diagnostic pathway; (b) prognosis and the main predictors of disease progression; (c) efficacy and safety of treatments; and (f) research priorities on diagnosis, prognosis, and treatment. The Bologna ICC on diagnosis, management and treatment of MNGIE provided evidence-based guidance for clinicians incorporating patients' values and preferences.


Asunto(s)
Enfermedades Gastrointestinales/diagnóstico , Enfermedades Gastrointestinales/terapia , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/terapia , Consenso , ADN Mitocondrial/genética , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/metabolismo , Humanos , Cooperación Internacional , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Mutación , Timidina Fosforilasa/genética , Timidina Fosforilasa/metabolismo
17.
J Inherit Metab Dis ; 44(3): 606-617, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33190319

RESUMEN

Urea cycle disorders (UCDs), including OTC deficiency (OTCD), are life-threatening diseases with a broad clinical spectrum. Early diagnosis and initiation of treatment based on a newborn screening (NBS) test for OTCD with high specificity and sensitivity may contribute to reduction of the significant complications and high mortality. The efficacy of incorporating orotic acid determination into routine NBS was evaluated. Combined measurement of orotic acid and citrulline in archived dried blood spots from newborns with urea cycle disorders and normal controls was used to develop an algorithm for routine NBS for OTCD in Israel. Clinical information and genetic confirmation results were obtained from the follow-up care providers. About 1147986 newborns underwent routine NBS including orotic acid determination, 25 of whom were ultimately diagnosed with a UCD. Of 11 newborns with OTCD, orotate was elevated in seven but normal in two males with early-onset and two males with late-onset disease. Orotate was also elevated in archived dried blood spots of all seven retrospectively tested historical OTCD patients, only three of whom had originally been identified by NBS with low citrulline and elevated glutamine. Among the other UCDs emerge, three CPS1D cases and additional three retrospective CPS1D cases otherwise reported as a very rare condition. Combined levels of orotic acid and citrulline in routine NBS can enhance the detection of UCD, especially increasing the screening sensitivity for OTCD and differentiate it from CPS1D. Our data and the negligible extra cost for orotic acid determination might contribute to the discussion on screening for proximal UCDs in routine NBS.


Asunto(s)
Citrulina/sangre , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Ácido Orótico/sangre , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Pruebas con Sangre Seca , Femenino , Humanos , Recién Nacido , Israel/epidemiología , Masculino , Tamizaje Neonatal , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/epidemiología , Estudios Retrospectivos , Trastornos Innatos del Ciclo de la Urea/epidemiología
18.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126676

RESUMEN

Peroxisomes proliferate by sequential processes comprising elongation, constriction, and scission of peroxisomal membrane. It is known that the constriction step is mediated by a GTPase named dynamin-like protein 1 (DLP1) upon efficient loading of GTP. However, mechanism of fuelling GTP to DLP1 remains unknown in mammals. We earlier show that nucleoside diphosphate (NDP) kinase-like protein, termed dynamin-based ring motive-force organizer 1 (DYNAMO1), generates GTP for DLP1 in a red alga, Cyanidioschyzon merolae. In the present study, we identified that nucleoside diphosphate kinase 3 (NME3), a mammalian homologue of DYNAMO1, localizes to peroxisomes. Elongated peroxisomes were observed in cells with suppressed expression of NME3 and fibroblasts from a patient lacking NME3 due to the homozygous mutation at the initiation codon of NME3. Peroxisomes proliferated by elevation of NME3 upon silencing the expression of ATPase family AAA domain containing 1, ATAD1. In the wild-type cells expressing catalytically-inactive NME3, peroxisomes were elongated. These results suggest that NME3 plays an important role in peroxisome division in a manner dependent on its NDP kinase activity. Moreover, the impairment of peroxisome division reduces the level of ether-linked glycerophospholipids, ethanolamine plasmalogens, implying the physiological importance of regulation of peroxisome morphology.


Asunto(s)
Dinaminas/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Peroxisomas/metabolismo , Fracciones Subcelulares/metabolismo , Secuencia de Aminoácidos , Animales , Células HeLa , Homocigoto , Humanos , Rhodophyta , Homología de Secuencia
19.
Eur J Med Genet ; 63(11): 104020, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32827718

RESUMEN

Accumulation of lipid peroxides causes membrane damage and cell death. Glutathione peroxidase 4 (GPX4) acts as a hydroperoxidase which prevents accumulation of toxic oxidized lipids and blocks ferroptosis, an iron-dependent, non-apoptotic mode of cell death. GPX4 deficiency causes Sedaghatian-type spondylo-metaphyseal dysplasia (SSMD), a lethal autosomal recessive disorder, featuring skeletal dysplasia, cardiac arrhythmia and brain anomalies with only three pathogenic GPX4 variants reported in two SSMD patients. Our objective was to identify the underlying genetic cause of neonatal death of two siblings presenting with hypotonia, cardiorespiratory failure and SSMD. Whole exome sequencing (WES) was performed in DNA samples from two siblings and their parents. Since "critical samples" were not available from the patients, DNA was extracted from dry blood spots (DBS) retrieved from the Israeli newborn-screening center. Sanger sequencing and segregation analysis followed the WES. Homozygous novel GPX4 variant, c.153_160del; p.His52fs*1 causing premature truncation of GPX4 was detected in both siblings; their parents were heterozygotes. Segregation analysis confirmed autosomal recessive inheritance. This report underscores the importance of DBS WES in identifying the genes and mutations causing devastating rare diseases. Obtaining critical samples from a dying patient is crucial for enabling genetic diagnosis.


Asunto(s)
Mutación con Pérdida de Función , Osteocondrodisplasias/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Pruebas con Sangre Seca , Femenino , Pruebas Genéticas , Homocigoto , Humanos , Recién Nacido , Masculino , Osteocondrodisplasias/patología , Linaje , Secuenciación del Exoma
20.
Clin Genet ; 98(4): 402-407, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32683677

RESUMEN

COG6-congenital disorder of glycosylation (COG6-CDG) is caused by biallelic mutations in COG6. To-date, 12 variants causing COG6-CDG in less than 20 patients have been reported. Using whole exome sequencing we identified two siblings with a novel homozygous deletion of 26 bp in COG6, creating a splicing variant (c.518_540 + 3del) and a shift in the reading frame. The phenotype of COG6-CDG includes growth and developmental retardation, microcephaly, liver and gastrointestinal disease, hypohydrosis and recurrent infections. We report two patients with novel phenotypic features including bowel malrotation and ambiguous genitalia, directing attention to the role of glycoprotein metabolism in the causation of disorders of sex development (DSD). Searching the glycomic literature, we identified 14 CDGs including males with DSD, a feature not previously accentuated. This study broadens the genetic and phenotypic spectrum of COG6-CDG and calls for increasing awareness to the central role of glycosylation processes in development of human sex and genitalia.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Trastornos Congénitos de Glicosilación/genética , Trastornos del Desarrollo Sexual/genética , Oxigenasas de Función Mixta/genética , Trastornos Congénitos de Glicosilación/mortalidad , Trastornos Congénitos de Glicosilación/fisiopatología , Trastornos del Desarrollo Sexual/mortalidad , Trastornos del Desarrollo Sexual/fisiopatología , Femenino , Glicosilación , Homocigoto , Humanos , Recién Nacido , Masculino , Mutación/genética , Fenotipo , Eliminación de Secuencia/genética , Hermanos , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...