Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895208

RESUMEN

A defined number of hematopoietic stem cell (HSC) clones are born during development and expand to form the pool of adult stem cells. An intricate balance between self-renewal and differentiation of these HSCs supports hematopoiesis for life. HSC fate is determined by complex transcription factor networks that drive cell-type specific gene programs. The transcription factor RUNX1 is required for definitive hematopoiesis, and mutations in Runx1 have been shown to reduce clonal diversity. The RUNX1 cofactor, CBFý, stabilizes RUNX1 binding to DNA, and disruption of their interaction alters downstream gene expression. Chemical screening for modulators of Runx1 and HSC expansion in zebrafish led us to identify a new mechanism for the RUNX1 inhibitor, Ro5-3335. We found that Ro5-3335 increased HSC divisions in zebrafish, and animals transplanted with Ro5-3335 treated cells had enhanced chimerism compared to untreated cells. Using human CD34+ cells, we show that Ro5-3335 remodels the RUNX1 transcription complex by binding to ELF1, independent of CBFý. This allows specific expression of cell cycle and hematopoietic genes that enhance HSC self-renewal and prevent differentiation. Furthermore, we provide the first evidence to show that it is possible to pharmacologically increase the number of stem cell clones in vivo , revealing a previously unknown mechanism for enhancing clonal diversity. Our studies have revealed a mechanism by which binding partners of RUNX1 determine cell fate, with ELF transcription factors guiding cell division. This information could lead to treatments that enhance clonal diversity for blood diseases.

2.
J Exp Med ; 215(10): 2673-2685, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209067

RESUMEN

Pluripotent cells have been used to probe developmental pathways that are involved in genetic diseases and oncogenic events. To find new therapies that would target MYB-driven tumors, we developed a pluripotent zebrafish blastomere culture system. We performed a chemical genetic screen and identified retinoic acid agonists as suppressors of c-myb expression. Retinoic acid treatment also decreased c-myb gene expression in human leukemia cells. Translocations that drive overexpression of the oncogenic transcription factor MYB are molecular hallmarks of adenoid cystic carcinoma (ACC), a malignant salivary gland tumor with no effective therapy. Retinoic acid agonists inhibited tumor growth in vivo in ACC patient-derived xenograft models and decreased MYB binding at translocated enhancers, thereby potentially diminishing the MYB positive feedback loop driving ACC. Our findings establish the zebrafish pluripotent cell culture system as a method to identify modulators of tumor formation, particularly establishing retinoic acid as a potential new effective therapy for ACC.


Asunto(s)
Blastómeros/inmunología , Carcinoma Adenoide Quístico/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myb/antagonistas & inhibidores , Neoplasias de las Glándulas Salivales/tratamiento farmacológico , Tretinoina/farmacología , Proteínas de Pez Cebra/antagonistas & inhibidores , Pez Cebra/inmunología , Animales , Blastómeros/patología , Carcinoma Adenoide Quístico/genética , Carcinoma Adenoide Quístico/inmunología , Carcinoma Adenoide Quístico/patología , Humanos , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/inmunología , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/inmunología , Neoplasias de las Glándulas Salivales/patología , Células U937 , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología
3.
Cell Stem Cell ; 18(6): 707-720, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27257760

RESUMEN

Cell engineering has brought us tantalizingly close to the goal of deriving patient-specific hematopoietic stem cells (HSCs). While directed differentiation and transcription factor-mediated conversion strategies have generated progenitor cells with multilineage potential, to date, therapy-grade engineered HSCs remain elusive due to insufficient long-term self-renewal and inadequate differentiated progeny functionality. A cross-species approach involving zebrafish and mammalian systems offers complementary methodologies to improve understanding of native HSCs. Here, we discuss the role of conserved developmental timing processes in vertebrate hematopoiesis, highlighting how identification and manipulation of stage-specific factors that specify HSC developmental state must be harnessed to engineer HSCs for therapy.


Asunto(s)
Ingeniería Celular/métodos , Desarrollo Embrionario , Células Madre Hematopoyéticas/citología , Animales , Hematopoyesis , Humanos , Modelos Biológicos , Factores de Tiempo
4.
Proc Natl Acad Sci U S A ; 112(36): E4975-84, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305940

RESUMEN

Calcium-dependent protein kinases (CDPKs) comprise the major group of Ca2+-regulated kinases in plants and protists. It has long been assumed that CDPKs are activated, like other Ca2+-regulated kinases, by derepression of the kinase domain (KD). However, we found that removal of the autoinhibitory domain from Toxoplasma gondii CDPK1 is not sufficient for kinase activation. From a library of heavy chain-only antibody fragments (VHHs), we isolated an antibody (1B7) that binds TgCDPK1 in a conformation-dependent manner and potently inhibits it. We uncovered the molecular basis for this inhibition by solving the crystal structure of the complex and simulating, through molecular dynamics, the effects of 1B7-kinase interactions. In contrast to other Ca2+-regulated kinases, the regulatory domain of TgCDPK1 plays a dual role, inhibiting or activating the kinase in response to changes in Ca2+ concentrations. We propose that the regulatory domain of TgCDPK1 acts as a molecular splint to stabilize the otherwise inactive KD. This dependence on allosteric stabilization reveals a novel susceptibility in this important class of parasite enzymes.


Asunto(s)
Proteínas Quinasas/química , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Toxoplasma/enzimología , Regulación Alostérica , Animales , Anticuerpos Antiprotozoarios/química , Anticuerpos Antiprotozoarios/metabolismo , Anticuerpos Antiprotozoarios/farmacología , Biocatálisis/efectos de los fármacos , Western Blotting , Calcio/metabolismo , Camélidos del Nuevo Mundo , Células Cultivadas , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Simulación de Dinámica Molecular , Mutación , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/farmacología , Toxoplasma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...