Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852180

RESUMEN

PURPOSE: In MR electrical properties tomography (MR-EPT), electrical properties (EPs, conductivity and permittivity) are reconstructed from MR measurements. Phantom measurements are important to characterize the performance of MR-EPT reconstruction methods, since they allow knowledge of reference EPs values. To assess reconstruction methods in a more realistic scenario, it is important to test the methods using phantoms with realistic shapes, internal structures, and dielectric properties. In this work, we present a 3D printing procedure for the creation of realistic brain-like phantoms to benchmark MR-EPT reconstructions. METHODS: We created two brain-like geometries with three different compartments using 3D printing. The first geometry was filled once, while the second geometry was filled three times with different saline-gelatin solutions, resulting in a total of four phantoms with different EPs. The saline solutions were characterized using a probe. 3D MR-EPT reconstructions were performed from MR measurements at 3T. The reconstructed conductivity values were compared to reference values of the saline-gelatin solutions. The measured fields were also compared to simulated fields using the same phantom geometry and electrical properties. RESULTS: The measured fields were consistent with simulated fields. Reconstructed conductivity values were consistent with the reference (probe) conductivity values. This indicated the suitability of such phantoms for benchmarking MR-EPT reconstructions. CONCLUSION: We presented a new workflow to 3D print realistic brain-like phantoms in an easy and affordable way. These phantoms are suitable to benchmark MR-EPT reconstructions, but can also be used for benchmarking other quantitative MR methods.

2.
Magn Reson Med ; 91(3): 1190-1199, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37876351

RESUMEN

PURPOSE: Several reconstruction methods for MR-based electrical properties tomography (EPT) have been developed. However, the lack of common data makes it difficult to objectively compare their performances. This is, however, a necessary precursor for standardizing and introducing this technique in the clinical setting. To enable objective comparison of the performances of reconstruction methods and provide common data for their training and testing, we created ADEPT, a database of simulated data for brain MR-EPT reconstructions. METHODS: ADEPT is a database containing in silico data for brain EPT reconstructions. This database was created from 25 different brain models, with and without tumors. Rigid geometric augmentations were applied, and different electrical properties were assigned to white matter, gray matter, CSF, and tumors to generate 120 different brain models. These models were used as input for finite-difference time-domain simulations in Sim4Life, used to compute the electromagnetic fields needed for MR-EPT reconstructions. RESULTS: Electromagnetic fields from 84 healthy and 36 tumor brain models were simulated. The simulated fields relevant for MR-EPT reconstructions (transmit and receive RF fields and transceive phase) and their ground-truth electrical properties are made publicly available through ADEPT. Additionally, nonattainable fields such as the total magnetic field and the electric field are available upon request. CONCLUSION: ADEPT will serve as reference database for objective comparisons of reconstruction methods and will be a first step toward standardization of MR-EPT reconstructions. Furthermore, it provides a large amount of data that can be exploited to train data-driven methods. It can be accessed from  https://doi.org/10.34894/V0HBJ8.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias , Humanos , Conductividad Eléctrica , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Tomografía/métodos , Fantasmas de Imagen , Algoritmos
3.
Phys Med Biol ; 67(6)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35189610

RESUMEN

Objective.Stereotactic arrhythmia radioablation (STAR) is a novel, non-invasive treatment for refractory ventricular tachycardia (VT). The VT isthmus is subject to both respiratory and cardiac motion. Rapid cardiac motion presents a unique challenge. In this study, we provide first experimental evidence for real-time cardiorespiratory motion-mitigated MRI-guided STAR on the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) aimed at simultaneously compensating cardiac and respiratory motions.Approach.A real-time cardiorespiratory motion-mitigated radiotherapy workflow was developed on the Unity MR-linac in research mode. A 15-beam intensity-modulated radiation therapy treatment plan (1 × 25 Gy) was created in Monaco v.5.40.01 (Elekta AB) for the Quasar MRI4Dphantom (ModusQA, London, ON). A film dosimetry insert was moved by combining either artificial (cos4, 70 bpm, 10 mm peak-to-peak) or subject-derived (59 average bpm, 15.3 mm peak-to-peak) cardiac motion with respiratory (sin, 12 bpm, 20 mm peak-to-peak) motion. A balanced 2D cine MRI sequence (13 Hz, field-of-view = 400 × 207 mm2, resolution = 3 × 3 × 15 mm3) was developed to estimate cardiorespiratory motion. Cardiorespiratory motion was estimated by rigid registration and then deconvoluted into cardiac and respiratory components. For beam gating, the cardiac component was used, whereas the respiratory component was used for MLC-tracking. In-silico dose accumulation experiments were performed on three patient data sets to simulate the dosimetric effect of cardiac motion on VT targets.Main results.Experimentally, a duty cycle of 57% was achieved when simultaneously applying respiratory MLC-tracking and cardiac gating. Using film, excellent agreement was observed compared to a static reference delivery, resulting in a 1%/1 mm gamma pass rate of 99%. The end-to-end gating latency was 126 ms on the Unity MR-linac. Simulations showed that cardiac motion decreased the target's D98% dose between 0.1 and 1.3 Gy, with gating providing effective mitigation.Significance.Real-time MRI-guided cardiorespiratory motion management greatly reduces motion-induced dosimetric uncertainty and warrants further research and development for potential future use in STAR.


Asunto(s)
Imagenología Tridimensional , Taquicardia Ventricular , Arritmias Cardíacas , Corazón/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Movimiento (Física)
4.
Phys Med Biol ; 66(8)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33761491

RESUMEN

A synthetic computed tomography (sCT) is required for daily plan optimization on an MRI-linac. Yet, only limited information is available on the accuracy of dose calculations on sCT for breast radiotherapy. This work aimed to (1) evaluate dosimetric accuracy of treatment plans for single-fraction neoadjuvant partial breast irradiation (PBI) on a 1.5 T MRI-linac calculated on a) bulk-density sCT mimicking the current MRI-linac workflow and b) deep learning-generated sCT, and (2) investigate the number of bulk-density levels required. For ten breast cancer patients we created three bulk-density sCTs of increasing complexity from the planning-CT, using bulk-density for: (1) body, lungs, and GTV (sCTBD1); (2) volumes for sCTBD1plus chest wall and ipsilateral breast (sCTBD2); (3) volumes for sCTBD2plus ribs (sCTBD3); and a deep learning-generated sCT (sCTDL) from a 1.5 T MRI in supine position. Single-fraction neoadjuvant PBI treatment plans for a 1.5 T MRI-linac were optimized on each sCT and recalculated on the planning-CT. Image evaluation was performed by assessing mean absolute error (MAE) and mean error (ME) in Hounsfield Units (HU) between the sCTs and the planning-CT. Dosimetric evaluation was performed by assessing dose differences, gamma pass rates, and dose-volume histogram (DVH) differences. The following results were obtained (median across patients for sCTBD1/sCTBD2/sCTBD3/sCTDLrespectively): MAE inside the body contour was 106/104/104/75 HU and ME was 8/9/6/28 HU, mean dose difference in the PTVGTVwas 0.15/0.00/0.00/-0.07 Gy, median gamma pass rate (2%/2 mm, 10% dose threshold) was 98.9/98.9/98.7/99.4%, and differences in DVH parameters were well below 2% for all structures except for the skin in the sCTDL. Accurate dose calculations for single-fraction neoadjuvant PBI on an MRI-linac could be performed on both bulk-density and deep learning sCT, facilitating further implementation of MRI-guided radiotherapy for breast cancer. Balancing simplicity and accuracy, sCTBD2showed the optimal number of bulk-density levels for a bulk-density approach.


Asunto(s)
Terapia Neoadyuvante , Humanos , Imagen por Resonancia Magnética , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X
5.
Phys Med Biol ; 65(12): 12NT01, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32330921

RESUMEN

Motion is problematic during radiotherapy as it could lead to potential underdosage of the tumor, and/or overdosage in organs-at-risk. A solution is adaptive radiotherapy guided by magnetic resonance imaging (MRI). MRI allows for imaging of target volumes and organs-at-risk before and during treatment delivery with superb soft tissue contrast in any desired orientation, enabling motion management by means of (real-time) adaptive radiotherapy. The noise navigator, which is independent of the MR signal, could serve as a secondary motion detection method in synergy with MR imaging. The feasibility of respiratory motion detection by means of the noise navigator was demonstrated previously. Furthermore, from electromagnetic simulations we know that the noise navigator is sensitive to tissue displacement and thus could in principle be used for the detection of various types of motion. In this study we demonstrate the detection of various types of motion for three anatomical use cases of MRI-guided radiotherapy, i.e. torso (bulk movement and variable breathing), head-and-neck (swallowing) and cardiac. Furthermore, it is shown that the noise navigator can detect bulk movement, variable breathing and swallowing on a hybrid 1.5 T MRI-linac system. Cardiac activity detection through the noise navigator seems feasible in an MRI-guided radiotherapy setting, but needs further optimization. The noise navigator is a versatile and fast (millisecond temporal resolution) motion detection method independent of MR signal that could serve as an independent verification method to detect the occurrence of motion in synergy with real-time MRI-guided radiotherapy.


Asunto(s)
Imagen por Resonancia Magnética , Movimientos de los Órganos , Radioterapia Guiada por Imagen/métodos , Humanos , Órganos en Riesgo/efectos de la radiación , Aceleradores de Partículas , Radioterapia Guiada por Imagen/efectos adversos , Relación Señal-Ruido
6.
Phys Med Biol ; 65(1): 01NT02, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31775130

RESUMEN

Respiratory-correlated 4D-MRI can characterize respiratory-induced motion of tumors and organs-at-risk for radiotherapy treatment planning and is a necessity for image guidance of moving tumors treated on an MRI-linac. Essential for 4D-MRI generation is a robust respiratory surrogate signal. We investigated the feasibility of the noise navigator as respiratory surrogate signal for 4D-MRI generation. The noise navigator is based on the respiratory-induced modulation of the thermal noise variance measured by the receive coils during MR acquisition and thus is inherently present and synchronized with MRI data acquisition. Additionally, the noise navigator can be combined with any rectilinear readout strategy (e.g. radial and cartesian) and is independent of MR image contrast and imaging orientation. For radiotherapy applications, the noise navigator provides a robust respiratory signal for patients scanned with an elevated coil setup. This is particularly attractive for widely used cartesian sequences where currently a non-interfering self-navigation means is lacking for MRI-based simulation and MRI-guided radiotherapy. The feasibility of 4D-MRI generation with the noise navigator as respiratory surrogate signal was demonstrated for both cartesian and radial readout strategies in radiotherapy setup on four healthy volunteers and two radiotherapy patients on a dedicated 1.5 T MRI scanner and two radiotherapy patients on a 1.5 T MRI-linac system. Moreover, the respiratory-correlated 4D-MR images showed liver motion comparable to a reference 2D cine MRI series for the volunteers. For 2D cartesian cine MRI acquisitions, both the noise navigator and respiratory bellows were benchmarked against an image navigator. Respiratory phase detection based on the noise navigator agreed 1.4 times better with the image navigator than the respiratory bellows did. For a 3D Stack-of-Stars acquisitions, the noise navigator was compared to radial self-navigation and a 1.7 times higher respiratory phase detection agreement was observed than for the respiratory bellows compared to radial self-navigation.


Asunto(s)
Hígado/efectos de la radiación , Neoplasias Pulmonares/patología , Imagen por Resonancia Magnética/métodos , Órganos en Riesgo/efectos de la radiación , Neoplasias Pancreáticas/patología , Respiración , Técnicas de Imagen Sincronizada Respiratorias/métodos , Relación Señal-Ruido , Voluntarios Sanos , Humanos , Imagenología Tridimensional/métodos , Neoplasias Pulmonares/radioterapia , Movimiento , Neoplasias Pancreáticas/radioterapia , Aceleradores de Partículas
7.
Magn Reson Med ; 82(6): 2236-2247, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31317566

RESUMEN

PURPOSE: The noise navigator is a passive way to detect physiological motion occurring in a patient through thermal noise modulations measured by standard clinical radiofrequency receive coils. The aim is to gain a deeper understanding of the potential and applications of physiologically induced thermal noise modulations. METHODS: Numerical electromagnetic simulations and MR measurements were performed to investigate the relative contribution of tissue displacement versus modulation of the dielectric lung properties over the respiratory cycle, the impact of coil diameter and position with respect to the body. Furthermore, the spatial motion sensitivity of specific noise covariance matrix elements of a receive array was investigated. RESULTS: The influence of dielectric lung property variations on the noise variance is negligible compared to tissue displacement. Coil size affected the thermal noise variance modulation, but the location of the coil with respect to the body had a larger impact. The modulation depth of a 15 cm diameter stationary coil approximately 3 cm away from the chest (i.e. radiotherapy setup) was 39.7% compared to 4.2% for a coil of the same size on the chest, moving along with respiratory motion. A combination of particular noise covariance matrix elements creates a specific spatial sensitivity for motion. CONCLUSIONS: The insight gained on the physical relations governing the noise navigator will allow for optimized use and development of new applications. An optimized combination of elements from the noise covariance matrix offer new ways of performing, e.g. motion tracking.


Asunto(s)
Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Movimiento (Física) , Simulación por Computador , Radiación Electromagnética , Voluntarios Sanos , Humanos , Masculino , Músculos/diagnóstico por imagen , Fantasmas de Imagen , Ondas de Radio , Radioterapia , Relación Señal-Ruido , Piel/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...