Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
2.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 36-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446606

RESUMEN

Alcohol misuse contributes to the dysregulation of immune responses and multiorgan dysfunction across various tissues, which are associated with higher risk of morbidity and mortality in people with alcohol use disorders. Organ-specific immune cells, including microglia in the brain, alveolar macrophages in the lungs, and Kupffer cells in the liver, play vital functions in host immune defense through tissue repair and maintenance of homeostasis. However, binge drinking and chronic alcohol misuse impair these immune cells' abilities to regulate inflammatory signaling and metabolism, thus contributing to multiorgan dysfunction. Further complicating these delicate systems, immune cell dysfunction associated with alcohol misuse is exacerbated by aging and gut barrier leakage. This critical review describes recent advances in elucidating the potential mechanisms by which alcohol misuse leads to derangements in host immunity and highlights current gaps in knowledge that may be the focus of future investigations.


Asunto(s)
Alcoholismo , Humanos , Alcoholismo/metabolismo , Etanol/metabolismo , Hígado , Macrófagos Alveolares/metabolismo , Pulmón
3.
Hepatol Commun ; 6(10): 2781-2797, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945902

RESUMEN

Liver fibrosis is an aberrant wound healing response that results from chronic injury and is mediated by hepatocellular death and activation of hepatic stellate cells (HSCs). While induction of oxidative stress is well established in fibrotic livers, there is limited information on stress-mediated mechanisms of HSC activation. Cellular stress triggers an adaptive defense mechanism via master protein homeostasis regulator, heat shock factor 1 (HSF1), which induces heat shock proteins to respond to proteotoxic stress. Although the importance of HSF1 in restoring cellular homeostasis is well-established, its potential role in liver fibrosis is unknown. Here, we show that HSF1 messenger RNA is induced in human cirrhotic and murine fibrotic livers. Hepatocytes exhibit nuclear HSF1, whereas stellate cells expressing alpha smooth muscle actin do not express nuclear HSF1 in human cirrhosis. Interestingly, despite nuclear HSF1, murine fibrotic livers did not show induction of HSF1 DNA binding activity compared with controls. HSF1-deficient mice exhibit augmented HSC activation and fibrosis despite limited pro-inflammatory cytokine response and display delayed fibrosis resolution. Stellate cell and hepatocyte-specific HSF1 knockout mice exhibit higher induction of profibrogenic response, suggesting an important role for HSF1 in HSC activation and fibrosis. Stable expression of dominant negative HSF1 promotes fibrogenic activation of HSCs. Overactivation of HSF1 decreased phosphorylation of JNK and prevented HSC activation, supporting a protective role for HSF1. Our findings identify an unconventional role for HSF1 in liver fibrosis. Conclusion: Our results show that deficiency of HSF1 is associated with exacerbated HSC activation promoting liver fibrosis, whereas activation of HSF1 prevents profibrogenic HSC activation.


Asunto(s)
Actinas , Factores de Transcripción del Choque Térmico/metabolismo , Células Estrelladas Hepáticas , Actinas/genética , Animales , Citocinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/genética , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo
4.
Hepatology ; 75(4): 1026-1037, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34496071

RESUMEN

Alcohol-associated liver disease (ALD) is emerging worldwide as the leading cause of liver-related morbidity, mortality, and indication for liver transplantation. The ALD Special Interest Group and the Clinical Research Committee at the digital American Association for the Study of Liver Diseases meeting in November 2020 held the scientific sessions to identify clinical unmet needs in ALD, and addressing these needs using clinical research methodologies. Of several research methodologies, the sessions were focused on (a) studying disease burden of ALD using large administrative databases, (b) developing biomarkers for noninvasive diagnosis of alcohol-associated hepatitis (AH) and estimation of disease prognosis, (c) identifying therapeutic targets for ALD and AH, (d) deriving accurate models to predict prognosis or posttransplant alcohol relapse as a basis for developing treatment algorithm and a uniform protocol on patient-selection criteria for liver transplantation, and (e) examining qualitative research methodologies in studying the barriers to implementation of multidisciplinary integrated care model by hepatology and addiction teams for the management of dual pathology of liver disease and of alcohol use disorder. Prospective multicenter studies are required to address many of these clinical unmet needs. Further, multidisciplinary care models are needed to improve long-term outcomes in patients with ALD.


Asunto(s)
Alcoholismo , Hepatopatías Alcohólicas , Trasplante de Hígado , Consumo de Bebidas Alcohólicas , Alcoholismo/complicaciones , Humanos , Hepatopatías Alcohólicas/diagnóstico , Hepatopatías Alcohólicas/terapia , Trasplante de Hígado/métodos , Estudios Prospectivos
5.
Hepatol Commun ; 5(9): 1616-1621, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34510833

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic has exacted a heavy toll on patients with alcohol-associated liver disease (ALD) and alcohol use disorder (AUD). The collective burden of ALD and AUD was large and growing, even before the COVID-19 pandemic. There is accumulating evidence that this pandemic has had a large direct effect on these patients and is likely to produce indirect effects through delays in care, psychological strain, and increased alcohol use. Now a year into the pandemic, it is important that clinicians fully understand the effects of the COVID-19 pandemic on patients with ALD and AUD. To fill existing gaps in knowledge, the scientific community must set research priorities for patients with ALD regarding their risk of COVID-19, prevention/treatment of COVID-19, changes in alcohol use during the pandemic, best use of AUD treatments in the COVID-19 era, and downstream effects of this pandemic on ALD. Conclusion: The COVID-19 pandemic has already inflicted disproportionate harms on patients with ALD, and ongoing, focused research efforts will be critical to better understand the direct and collateral effects of this pandemic on ALD.

6.
Hepatol Commun ; 5(7): 1165-1182, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34278167

RESUMEN

Cellular stress-mediated chaperones are linked to liver macrophage activation and inflammation in alcohol-associated liver disease (ALD). In this study, we investigate the role of endoplasmic reticulum (ER) resident stress chaperone GP96/HSP90B1/GRP94, paralog of the HSP90 family, in ALD pathogenesis. We hypothesize that ER resident chaperone, heat shock protein GP96, plays a crucial role in alcohol-associated liver inflammation and contributes to liver injury. We show high expression of GP96/HSP90B1 and GRP78/HSPA5 in human alcohol-associated hepatitis livers as well as in mouse ALD livers with induction of GP96 prominent in alcohol-exposed macrophages. Myeloid-specific GP96 deficient (M-GP96KO) mice failed to induce alcohol-associated liver injury. Alcohol-fed M-GP96KO mice exhibit significant reduction in steatosis, serum endotoxin, and pro-inflammatory cytokines compared with wild-type mice. Anti-inflammatory cytokines interleukin-10 and transforming growth factor ß, as well as activating transcription factor 3 and triggering receptor expressed on myeloid cells 2, markers of restorative macrophages, were higher in alcohol-fed M-GP96KO livers. M-GP96KO mice exhibit protection in a model of endotoxin-mediated liver injury in vivo, which is in agreement with reduced inflammatory responses during ex vivo lipopolysaccharide/endotoxin- stimulated bone marrow-derived macrophages from M-GP96KO mice. Furthermore, we show that liver macrophages from alcohol-fed M-GP96KO mice show compensatory induction of GRP78 messenger RNA, likely due to increased splicing of X-box binding protein-1. Finally, we show that inhibition of GP96 using a specific pharmacological agent, PU-WS13 or small interfering RNA, alleviates inflammatory responses in primary macrophages. Conclusion: Myeloid ER resident GP96 promotes alcohol-induced liver damage through activation of liver macrophage inflammatory responses, alteration in lipid homeostasis, and ER stress. These findings highlight a critical role for liver macrophage ER resident chaperone GP96/HSP90B1 in ALD, and its targeted inhibition represents a promising therapeutic approach in ALD.

8.
Alcohol ; 87: 89-95, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32353591

RESUMEN

On November 15, 2019, the 24th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held as a satellite conference during the annual Society for Leukocyte Biology meeting in Boston, Massachusetts. The 2019 meeting focused on alcohol, immunity, and organ damage, and included two plenary sessions. The first session highlighted new research exploring the mechanisms of alcohol-induced inflammation and liver disease, including effects on lipidomics and lipophagy, regulatory T cells, epigenetics, epithelial cells, and age-related changes in the gut. The second session covered alcohol-induced injury of other organs, encompassing diverse areas of research ranging from neurodegeneration, to lung barrier function, to colon carcinogenesis, to effects on viral infection. The discussions also highlighted current laboratory and clinical research used to identify biomarkers of alcohol use and disease.


Asunto(s)
Consumo de Bebidas Alcohólicas , Consumo de Bebidas Alcohólicas/efectos adversos , Alcoholismo/diagnóstico , Biomarcadores , Boston , Congresos como Asunto , Etanol/toxicidad , Humanos , Inflamación
9.
Alcohol Clin Exp Res ; 44(6): 1300-1311, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32282939

RESUMEN

BACKGROUND: Activation of NLRP3 in liver macrophages contributes to alcohol-associated liver disease (ALD). Molecular chaperone heat shock protein (HSP) 90 facilitates NLRP3 inflammasome activity during infections and inflammatory diseases. We previously reported that HSP90 is induced in ALD and regulates proinflammatory cytokines, tumor necrosis factor alpha, and IL-6. Whether HSP90 affects IL-1ß and IL-18 regulated by NLRP3 inflammasome in ALD is unknown. Here, we hypothesize that HSP90 modulated NLRP3 inflammasome activity and affects IL-1ß and IL-18 secretion in ALD. METHODS: The expression of HSP90AA1 and NLRP3 inflammasome genes was evaluated in human alcoholic livers and in mouse model of ALD. The importance of HSP90 on NLRP3 inflammasome activation in ALD was evaluated by administering HSP90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) to mice subjected to ALD, and in vitro to bone marrow-derived macrophages (BMDM) stimulated with LPS and ATP. The effect of activation of HSF1/HSPA1A axis during HSP90 inhibition or direct activation during heat shock of BMDMs on NLRP3 activity and secretion of downstream cytokines was evaluated. RESULTS: We found positive correlation between induction of HSP90 and NLRP3 inflammasome genes in human alcoholic cirrhotic livers. Administration of 17-DMAG in mouse model of ALD significantly down-regulated NLRP3 inflammasome-mediated caspase-1 (CASP-1) activity and cytokine secretion, with reduction in ALD. 17-DMAG-mediated decrease in NLRP3 was restricted to liver macrophages. Using BMDMs, we show that inhibition of HSP90 prevented CASP-1 activity, and Gasdermin D (GSDMD) cleavage, important in release of active IL-1ß and IL-18. Interestingly, activation of the heat shock factor 1 (HSF1)/HSPA1A axis, either during HSP90 inhibition or by heat shock, decreased NLRP3 inflammasome activity and reduced secretion of cytokines. CONCLUSION: Our studies indicate that inhibition of HSP90 and activation of HSF1/HSPA1A reduce IL-1ß and IL-18 via decrease in NLRP3/CASP-1 and GSDMD activity in ALD.


Asunto(s)
Hepatopatías Alcohólicas/genética , Adulto , Anciano , Animales , Benzoquinonas/farmacología , Caspasa 1/efectos de los fármacos , Caspasa 1/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Técnicas In Vitro , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lactamas Macrocíclicas/farmacología , Cirrosis Hepática Alcohólica/genética , Cirrosis Hepática Alcohólica/metabolismo , Hepatopatías Alcohólicas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Neoplasias , ARN Mensajero/metabolismo , Adulto Joven
11.
Alcohol ; 83: 75-81, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31398460

RESUMEN

Alcohol use disorder (AUD) affects over 15 million adults over age 18 in the United States, with estimated costs of 220 billion dollars annually - mainly due to poor quality of life and lost productivity, which in turn is intricately linked to cognitive dysfunction. AUD-induced neuroinflammation in the brain, notably the hippocampus, is likely to contribute to cognitive impairments. The neuroinflammatory mechanisms mediating the impact of chronic alcohol on the central nervous system, specifically cognition, require further study. We hypothesized that chronic alcohol consumption impairs memory and increases the inflammatory cytokines TNFα, IL6, MCP1, and IL1ß in the hippocampus and prefrontal cortex regions in the brain. Using the chronic-binge Gao-NIAAA alcohol mouse model of liver disease, representative of the drinking pattern common to human alcoholics, we investigated behavioral and neuroinflammatory parameters. Our data show that chronic alcohol intake elevated peripheral and brain alcohol levels, induced serum alanine aminotransferase (ALT, a marker of liver injury), impaired memory and sensorimotor coordination, and increased inflammatory gene expression in the hippocampus and prefrontal cortex. Interestingly, serum ALT and hippocampal IL6 correlated with memory impairment, suggesting an intrinsic relationship between neuroinflammation, cognitive decline, and liver disease. Overall, our results point to a likely liver-brain functional partnership and suggest that future strategies to alleviate hepatic and/or neuroinflammatory impacts of chronic AUD may result in improved cognitive outcomes.


Asunto(s)
Alcoholismo/complicaciones , Encefalitis/inducido químicamente , Hepatopatías Alcohólicas/fisiopatología , Trastornos de la Memoria/inducido químicamente , Alanina Transaminasa/sangre , Animales , Disfunción Cognitiva/inducido químicamente , Modelos Animales de Enfermedad , Encefalitis/genética , Etanol/administración & dosificación , Etanol/análisis , Etanol/sangre , Femenino , Expresión Génica , Hipocampo/química , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo
12.
Am J Physiol Cell Physiol ; 317(4): C687-C700, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268779

RESUMEN

Alcoholic liver disease results from a combination of immune and metabolic pathogenic events. In addition to liver injury, chronic alcohol consumption also causes adipose tissue inflammation. The specific immune mechanisms that drive this process are unknown. Here, we sought to determine the role of the innate immune receptor Toll-like receptor 4 (TLR4) in alcohol-induced adipose tissue inflammation. Using a model of chronic, multiple-binge alcohol exposure, we showed that alcohol-mediated accumulation of proinflammatory adipose tissue macrophages was absent in global TLR4 knockout mice. Proinflammatory macrophage accumulation did not depend on macrophage TLR4 expression; LysMCre-driven deletion of Tlr4 from myeloid cells did not affect circulating endotoxin or the accumulation of M1 macrophages in adipose tissue following alcohol exposure. Proinflammatory cytokine/chemokine production in the adipose stromal vascular fraction also occurred independently of TLR4. Finally, the levels of other adipose immune cells, such as dendritic cells, neutrophils, B cells, and T cells, were modulated by chronic, multiple-binge alcohol and the presence of TLR4. Together, these data indicate that TLR4 expression on cells, other than myeloid cells, is important for the alcohol-induced increase in proinflammatory adipose tissue macrophages.


Asunto(s)
Adipocitos/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Etanol/farmacología , Macrófagos/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Macrófagos/metabolismo , Ratones Transgénicos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
13.
Alcohol ; 77: 11-18, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30763905

RESUMEN

On January 26, 2018, the 23rd annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado. The meeting consisted of plenary sessions with oral presentations and a poster presentation session. There were four plenary sessions that covered a wide range of topics relating to alcohol use: Alcohol and Liver Disease; Alcohol, Inflammation and Immune Response; Alcohol and Organ Injury; Heath Consequences and Alcohol Drinking. The meeting provided a forum for the presentation and discussion of novel research findings regarding alcohol use and immunology.


Asunto(s)
Consumo de Bebidas Alcohólicas/inmunología , Alcoholismo/inmunología , Investigación Biomédica/tendencias , Congresos como Asunto/tendencias , Inmunidad Celular/inmunología , Consumo de Bebidas Alcohólicas/patología , Alcoholismo/diagnóstico , Animales , Investigación Biomédica/métodos , Colorado , Humanos , Inmunidad Celular/efectos de los fármacos
14.
Transplant Direct ; 4(11): e400, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30534591

RESUMEN

BACKGROUND: It remains controversial if arterial perfusion in addition to portal vein perfusion during machine preservation improves liver graft quality. Comparative studies using both techniques are lacking. We studied the impact of using single or dual machine perfusion of donation after circulatory death rat livers. In addition, we analyzed the effect of pulsatile versus continuous arterial flow. METHODS: Donation after circulatory death rat livers (n = 18) were preserved by 6 hours cold storage, followed by 1 hour subnormothermic machine perfusion (20°C, pressure of 40/5 mm Hg) and 2 hours ex vivo warm reperfusion (37°C, pressure of 80/11 mm Hg, 9% whole blood). Machine preservation was either through single portal vein perfusion (SP), dual pulsatile (DPP), or dual continuous perfusion (DCP) of the portal vein and hepatic artery. Hydrodynamics, liver function tests, histopathology, and expression of endothelial specific genes were assessed during 2 hours warm reperfusion. RESULTS: At the end of reperfusion, arterial flow in DPP livers tended to be higher compared to DCP and SP grafts. However, this difference was not significant nor was better flow associated with better outcome. No differences in bile production or alanine aminotransferase levels were observed. SP livers had significantly lower lactate compared to DCP, but not DPP livers. Levels of Caspase-3 and tumor necrosis factor-α were similar between the groups. Expression of endothelial genes Krüppel-like-factor 2 and endothelial nitric oxide synthase tended to be higher in dual perfused livers, but no histological evidence of better preservation of the biliary endothelium or vasculature of the hepatic artery was observed. CONCLUSIONS: This study shows comparable outcomes after using a dual or single perfusion approach during end-ischemic subnormothermic liver machine preservation.

16.
J Immunol ; 200(7): 2291-2303, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29445009

RESUMEN

Binge/moderate alcohol suppresses TLR4-MyD88 proinflammatory cytokines; however, alcohol's effects on TLR-TRIF signaling, especially after in vivo exposure in humans, are unclear. We performed a comparative analysis of the TLR4-MyD88, TLR4-TRIF, and TLR3-TRIF pathways in human monocytes following binge alcohol exposure. Mechanistic regulation of TLR-TRIF signaling by binge alcohol was evaluated by analyzing IRF3 and TBK1, upstream regulator protein phosphatase 1 (PP1), and immunoregulatory stress proteins HspA1A and XBP-1 in alcohol-treated human and mouse monocytes/macrophages. Two approaches for alcohol exposure were used: in vivo exposure of primary monocytes in binge alcohol-consuming human volunteers or in vitro exposure of human monocytes/murine macrophages to physiological alcohol concentrations (25-50 mM ethanol), followed by LPS (TLR4) or polyinosinic-polycytidylic acid (TLR3) stimulation ex vivo. In vivo and in vitro binge alcohol exposure significantly inhibited the TLR4-MyD88 cytokines TNF-α and IL-6, as well as the TLR4-TRIF cytokines/chemokines IFN-ß, IP-10, and RANTES, in human monocytes, but not TLR3-TRIF-induced cytokines/chemokines, as detected by quantitative PCR and ELISA. Mechanistic analyses revealed TBK-1-independent inhibition of the TLR4-TRIF effector IRF3 in alcohol-treated macrophages. Although stress protein XBP-1, which is known to regulate IRF3-mediated IFN-ß induction, was not affected by alcohol, HspA1A was induced by in vivo alcohol in human monocytes. Alcohol-induced HspA1A was required for inhibition of TLR4-MyD88 signaling but not TLR4-TRIF cytokines in macrophages. In contrast, inhibition of PP1 prevented alcohol-mediated TLR4-TRIF tolerance in macrophages. Collectively, our results demonstrate that in vivo and in vitro binge alcohol exposure in humans suppresses TLR4-MyD88 and TLR4-TRIF, but not TLR3-TRIF, responses. Whereas alcohol-mediated effects on the PP1-IRF3 axis inhibit the TLR4-TRIF pathway, HspA1A selectively suppresses the TLR4-MyD88 pathway in monocytes/macrophages.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/antagonistas & inhibidores , Consumo Excesivo de Bebidas Alcohólicas/patología , Etanol/toxicidad , Macrófagos/inmunología , Monocitos/inmunología , Factor 88 de Diferenciación Mieloide/antagonistas & inhibidores , Receptor Toll-Like 3/antagonistas & inhibidores , Receptor Toll-Like 4/antagonistas & inhibidores , Adolescente , Adulto , Animales , Línea Celular , Quimiocina CCL5/antagonistas & inhibidores , Quimiocina CXCL10/antagonistas & inhibidores , Femenino , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Inflamación/patología , Interferón beta/antagonistas & inhibidores , Interleucina-6/antagonistas & inhibidores , Lipopolisacáridos/inmunología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Poli I-C/inmunología , Células RAW 264.7 , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Proteína 1 de Unión a la X-Box/efectos de los fármacos , Adulto Joven
17.
Biomolecules ; 7(3)2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28805741

RESUMEN

Several scientific and clinical studies have shown an association between chronic alcohol consumption and the occurrence of cancer in humans. The mechanism for alcohol-induced carcinogenesis has not been fully understood, although plausible events include genotoxic effects of acetaldehyde, cytochrome P450 2E1 (CYP2E1)-mediated generation of reactive oxygen species, aberrant metabolism of folate and retinoids, increased estrogen, and genetic polymorphisms. Here, we summarize the impact of alcohol drinking on the risk of cancer development and potential underlying molecular mechanisms. The interactions between alcohol abuse, anti-tumor immune response, tumor growth, and metastasis are complex. However, multiple studies have linked the immunosuppressive effects of alcohol with tumor progression and metastasis. The influence of alcohol on the host immune system and the development of possible effective immunotherapy for cancer in alcoholics are also discussed here. The conclusive biological effects of alcohol on tumor progression and malignancy have not been investigated extensively using an animal model that mimics the human disease. This review provides insights into cancer pathogenesis in alcoholics, alcohol and immune interactions in different cancers, and scope and future of targeted immunotherapeutic modalities in patients with alcohol abuse.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/inmunología , Consumo de Bebidas Alcohólicas/genética , Animales , Femenino , Predisposición Genética a la Enfermedad , Humanos , Inmunoterapia , Masculino , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo
18.
Hepatol Commun ; 1(2): 83, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-29404446
19.
PLoS One ; 11(10): e0164225, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711160

RESUMEN

Alcoholic liver disease occurs due to chronic, heavy drinking and is driven both by metabolic alterations and immune cell activation. Women are at a higher risk than men for developing alcohol induced liver injury and this dimorphism is reflected in animal models of alcoholic liver disease. The importance of adipose tissue in alcoholic liver disease is emerging. Chronic alcohol consumption causes adipose tissue inflammation, which can influence liver injury. Sex differences in body fat composition are well known. However, it is still unclear if alcohol-induced adipose tissue inflammation occurs in a sex-dependent manner. Here we have employed the clinically relevant NIAAA model of chronic-binge alcohol consumption to investigate this sexual dimorphism. We report that female mice have greater liver injury than male mice despite lower alcohol consumption. Chronic-binge alcohol induces adipose tissue inflammation in vivo in female mice, which is illustrated by increased expression of TNFα, IL-6, and CCL2, compared to only IL-6 induction in male adipose tissue. Further, macrophage activation markers such as CD68 as well as the pro-inflammatory activation markers CD11b and CD11c were higher in female adipose tissue. Interestingly, alcohol induced expression of TLR2, 3, 4, and 9 in female but not male adipose tissue, without affecting the TLR adaptor, MyD88. Higher trends of serum endotoxin in female mice may likely contribute to adipose tissue inflammation. In vitro chronic alcohol-mediated sensitization of macrophages to endotoxin is independent of sex. In summary, we demonstrate for the first time that there is a sexual dimorphism in alcohol-induced adipose tissue inflammation and female mice exhibit a higher degree of inflammation than male mice.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Etanol/farmacología , Hígado/efectos de los fármacos , Hígado/lesiones , Caracteres Sexuales , Tejido Adiposo/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Endotoxinas/sangre , Femenino , Inmunidad Innata/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
20.
Alcohol ; 54: 73-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27522326

RESUMEN

On September 27, 2015 the 20th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held as a satellite symposium at the annual meeting of the Society for Leukocyte Biology in Raleigh, NC. The 2015 meeting focused broadly on adverse effects of alcohol and alcohol-use disorders in multiple organ systems. Divided into two plenary sessions, AIRIG opened with the topic of pulmonary inflammation as a result of alcohol consumption, which was followed by alcohol's effect on multiple organs, including the brain and liver. With presentations showing the diverse range of underlying pathology and mechanisms associated with multiple organs as a result of alcohol consumption, AIRIG emphasized the importance of continued alcohol research, as its detrimental consequences are not limited to one or even two organs, but rather extend to the entire host as a whole.


Asunto(s)
Etanol/efectos adversos , Inflamación/inducido químicamente , Animales , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...