Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737220

RESUMEN

Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.


Malaria affects around 240 million people around the world every year. The microscopic parasite responsible for the disease are carried by certain mosquitoes and gets transmitted to humans through bites. These parasites are increasingly acquiring genetic mutations that make anti-malaria medication less effective, creating an urgent need for alternative treatment approaches. Several new malaria drugs being explored in preclinical research work by binding to an enzyme known as DHODH and preventing it from performing its usual role in the parasite. Previous work found that, in some cases, malaria parasites that evolved resistance to one type of DHODH inhibitor (by acquiring mutations in their DHODH enzyme) then became more vulnerable to another kind. It may be possible to leverage this 'collateral sensitivity' by designing treatments which combine two DHODH inhibitors and therefore make it harder for the parasites to evolve resistance. To investigate this possibility, Mandt et al. first tested several DHODH inhibitors to find the one that was most potent against drug-resistant parasites. In subsequent experiments, they combined TCMDC-125334, the best candidate that emerged from these tests, with a DHODH inhibitor that works well against vulnerable parasites. However, the parasites still rapidly evolved resistance. Further work identified a new DHODH mutation that allowed the parasites to evade both drugs simultaneously. Together, these findings suggest that the DHODH enzyme may not be the best target for new malaria drugs because many it can acquire many possible mutations that confer resistance. Such results may inform other studies that aim to harness collateral sensitivity to fight against a range of harmful agents.


Asunto(s)
Antimaláricos , Malaria Falciparum , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Parásitos , Animales , Humanos , Dihidroorotato Deshidrogenasa , Malaria Falciparum/parasitología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Variaciones en el Número de Copia de ADN , Sensibilidad Colateral al uso de Fármacos , Parásitos/metabolismo
3.
Cell Chem Biol ; 29(2): 191-201.e8, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34348113

RESUMEN

We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression.


Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Acetato CoA Ligasa/metabolismo , Antimaláricos/química , Inhibidores Enzimáticos/química , Humanos , Malaria/metabolismo , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología
4.
Sci Transl Med ; 11(521)2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801884

RESUMEN

Resistance has developed in Plasmodium malaria parasites to every antimalarial drug in clinical use, prompting the need to characterize the pathways mediating resistance. Here, we report a framework for assessing development of resistance of Plasmodium falciparum to new antimalarial therapeutics. We investigated development of resistance by P. falciparum to the dihydroorotate dehydrogenase (DHODH) inhibitors DSM265 and DSM267 in tissue culture and in a mouse model of P. falciparum infection. We found that resistance to these drugs arose rapidly both in vitro and in vivo. We identified 13 point mutations mediating resistance in the parasite DHODH in vitro that overlapped with the DHODH mutations that arose in the mouse infection model. Mutations in DHODH conferred increased resistance (ranging from 2- to ~400-fold) to DHODH inhibitors in P. falciparum in vitro and in vivo. We further demonstrated that the drug-resistant parasites carrying the C276Y mutation had mitochondrial energetics comparable to the wild-type parasite and also retained their fitness in competitive growth experiments. Our data suggest that in vitro selection of drug-resistant P. falciparum can predict development of resistance in a mouse model of malaria infection.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Parásitos/enzimología , Animales , Dihidroorotato Deshidrogenasa , Modelos Animales de Enfermedad , Resistencia a Medicamentos/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Ratones SCID , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Parásitos/efectos de los fármacos , Fenotipo , Plasmodium falciparum , Mutación Puntual/genética , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Triazoles/química , Triazoles/farmacología , Triazoles/uso terapéutico
5.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567982

RESUMEN

A betulinic acid-based compound, bevirimat (BVM), inhibits HIV-1 maturation by blocking a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. Previous studies showed that mutations conferring resistance to BVM cluster around the CA-SP1 cleavage site. Single amino acid polymorphisms in the SP1 region of Gag and the C terminus of CA reduced HIV-1 susceptibility to BVM, leading to the discontinuation of BVM's clinical development. We recently reported a series of "second-generation" BVM analogs that display markedly improved potency and breadth of activity relative to the parent molecule. Here, we demonstrate that viral clones bearing BVM resistance mutations near the C terminus of CA are potently inhibited by second-generation BVM analogs. We performed de novo selection experiments to identify mutations that confer resistance to these novel compounds. Selection experiments with subtype B HIV-1 identified an Ala-to-Val mutation at SP1 residue 1 and a Pro-to-Ala mutation at CA residue 157 within the major homology region (MHR). In selection experiments with subtype C HIV-1, we identified mutations at CA residue 230 (CA-V230M) and SP1 residue 1 (SP1-A1V), residue 5 (SP1-S5N), and residue 10 (SP1-G10R). The positions at which resistance mutations arose are highly conserved across multiple subtypes of HIV-1. We demonstrate that the mutations confer modest to high-level maturation inhibitor resistance. In most cases, resistance was not associated with a detectable increase in the kinetics of CA-SP1 processing. These results identify mutations that confer resistance to second-generation maturation inhibitors and provide novel insights into the mechanism of resistance.IMPORTANCE HIV-1 maturation inhibitors are a class of small-molecule compounds that block a late step in the viral protease-mediated processing of the Gag polyprotein precursor, the viral protein responsible for the formation of virus particles. The first-in-class HIV-1 maturation inhibitor bevirimat was highly effective in blocking HIV-1 replication, but its activity was compromised by naturally occurring sequence polymorphisms within Gag. Recently developed bevirimat analogs, referred to as "second-generation" maturation inhibitors, overcome this issue. To understand more about how these second-generation compounds block HIV-1 maturation, here we selected for HIV-1 mutants that are resistant to these compounds. Selections were performed in the context of two different subtypes of HIV-1. We identified a small set of mutations at highly conserved positions within the capsid and spacer peptide 1 domains of Gag that confer resistance. Identification and analysis of these maturation inhibitor-resistant mutants provide insights into the mechanisms of resistance to these compounds.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral/efectos de los fármacos , VIH-1/efectos de los fármacos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Línea Celular , Seropositividad para VIH/tratamiento farmacológico , Humanos , Células Jurkat , Mutación/efectos de los fármacos , Triterpenos Pentacíclicos , Succinatos/farmacología , Triterpenos/farmacología , Virión/efectos de los fármacos , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Ácido Betulínico
6.
Sci Adv ; 4(5): eaat3775, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29806032

RESUMEN

Transmission of Plasmodium parasites to the mosquito requires the formation and development of gametocytes. Studies in infected humans have shown that only the most mature forms of Plasmodium falciparum gametocytes are present in circulation, whereas immature forms accumulate in the hematopoietic environment of the bone marrow. We used the rodent model Plasmodium berghei to study gametocyte behavior through time under physiological conditions. Intravital microscopy demonstrated preferential homing of early gametocyte forms across the intact vascular barrier of the bone marrow and the spleen early during infection and subsequent development in the extravascular environment. During the acute phase of infection, we observed vascular leakage resulting in further parasite accumulation in this environment. Mature gametocytes showed high deformability and were found entering and exiting the intact vascular barrier. We suggest that extravascular gametocyte localization and mobility are essential for gametocytogenesis and transmission of Plasmodium to the mosquito.


Asunto(s)
Médula Ósea/parasitología , Malaria/patología , Malaria/parasitología , Plasmodium/fisiología , Migración Transendotelial y Transepitelial , Animales , Modelos Animales de Enfermedad , Interacciones Huésped-Parásitos , Humanos , Ratones , Imagen Molecular , Sistema Mononuclear Fagocítico/parasitología
7.
ACS Infect Dis ; 4(4): 508-515, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29336544

RESUMEN

Drug resistance has been reported for every antimalarial in use highlighting the need for new strategies to protect the efficacy of therapeutics in development. We have previously shown that resistance can be suppressed with a population biology trap: by identifying situations where resistance to one compound confers hypersensitivity to another (collateral sensitivity), we can design combination therapies that not only kill the parasite but also guide its evolution away from resistance. We applied this concept to the Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) enzyme, a well validated antimalarial target with inhibitors in the development pipeline. Here, we report a high-throughput screen to identify compounds specifically active against PfDHODH resistant mutants. We additionally perform extensive cross-resistance profiling allowing us to identify compound pairs demonstrating the potential for mutually incompatible resistance. These combinations represent promising starting points for exploiting collateral sensitivity to extend the useful lifespan of new antimalarial therapeutics.


Asunto(s)
Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Dihidroorotato Deshidrogenasa , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos
8.
Antimicrob Agents Chemother ; 60(1): 190-7, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26482309

RESUMEN

Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1.


Asunto(s)
Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Succinatos/farmacología , Triterpenos/farmacología , Virión/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Alquilación , Aminación , Secuencia de Aminoácidos , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Cápside/efectos de los fármacos , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Farmacorresistencia Viral/efectos de los fármacos , Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , VIH-1/metabolismo , Células HeLa , Humanos , Concentración 50 Inhibidora , Datos de Secuencia Molecular , Polimorfismo Genético , Relación Estructura-Actividad , Succinatos/síntesis química , Succinatos/química , Linfocitos T/efectos de los fármacos , Linfocitos T/virología , Triterpenos/síntesis química , Triterpenos/química , Virión/genética , Virión/metabolismo , Replicación Viral/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
9.
J Biol Chem ; 288(31): 22315-23, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23793104

RESUMEN

Drosophila melanogaster Heterochromatin Protein 1a (HP1a) is an essential protein critical for heterochromatin assembly and regulation. Its chromo shadow domain (CSD) homodimerizes, a requirement for binding protein partners that contain a PXVXL motif. How does HP1a select among its many different PXVXL-containing partners? HP1a binds tightly to Heterochromatin Protein 2 (HP2), but weakly to PIWI. We investigated differences in homodimerization and the impact of the C-terminal extension (CTE) by contrasting HP1a to its paralogue, HP1b. HP1a and HP1b differ in the dimerization interface, with HP1a having an Arg at position 188 rather than Glu. We find that while this substitution reduces the dimerization constant, it does not impact the binding surface as demonstrated by unchanged partner binding affinities. However, the CTE (only 4 residues in HP1a as compared with 87 residues in HP1b) is critical; the charged residues in HP1a are necessary for tight peptide binding. Examining a panel of amino acid substitutions in the HP1a CSD, we find that Leu-165 in HP1a interacts with HP2 but not PIWI, supporting the conclusion that different sites in the binding surface provide discrimination for partner selection. Partner sequence is also critical for affinity, as the remaining difference in binding between HP2 and PIWI polypeptides is eliminated by swapping the PXVXL motifs between the two. Taken together, these studies indicate that the binding surface of the HP1a CSD plus its short CTE provide the needed discrimination among HP1a's partners, and that the CTE is important for differentiating the interactions of the Drosophila HP1 paralogs.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Dimerización , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido
10.
PLoS Genet ; 9(5): e1003506, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23696750

RESUMEN

Maintaining levels of calcium in the cytosol is important for many cellular events, including cell migration, where localized regions of high calcium are required to regulate cytoskeletal dynamics, contractility, and adhesion. Studies show inositol-trisphosphate receptors (IP3R) and ryanodine receptors (RyR), which release calcium into the cytosol, are important regulators of cell migration. Similarly, proteins that return calcium to secretory stores are likely to be important for cell migration. The secretory protein calcium ATPase (SPCA) is a Golgi-localized protein that transports calcium from the cytosol into secretory stores. SPCA has established roles in protein processing, metal homeostasis, and inositol-trisphosphate signaling. Defects in the human SPCA1/ATP2C1 gene cause Hailey-Hailey disease (MIM# 169600), a genodermatosis characterized by cutaneous blisters and fissures as well as keratinocyte cell adhesion defects. We have determined that PMR-1, the Caenorhabditis elegans ortholog of SPCA1, plays an essential role in embryogenesis. Pmr-1 strains isolated from genetic screens show terminal phenotypes, such as ventral and anterior enclosure failures, body morphogenesis defects, and an unattached pharynx, which are caused by earlier defects during gastrulation. In Pmr-1 embryos, migration rates are significantly reduced for cells moving along the embryo surface, such as ventral neuroblasts, C-derived, and anterior-most blastomeres. Gene interaction experiments show changing the activity of itr-1/IP3R and unc-68/RyR modulates levels of embryonic lethality in Pmr-1 strains, indicating pmr-1 acts with these calcium channels to regulate cell migration. This analysis reveals novel genes involved in C. elegans cell migration, as well as a new role in cell migration for the highly conserved SPCA gene family.


Asunto(s)
Caenorhabditis elegans/genética , ATPasas Transportadoras de Calcio/genética , Calcio/metabolismo , Desarrollo Embrionario , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Movimiento Celular/genética , Epistasis Genética , Aparato de Golgi , Humanos , Pénfigo Familiar Benigno/enzimología , Pénfigo Familiar Benigno/genética , Pénfigo Familiar Benigno/patología , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA