Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569609

RESUMEN

Female and male glial fibrillary acidic protein-thymidine kinase (GFAP-TK) transgenic rats were made ethanol dependent via a six-week chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. During the last week of CIE, a subset of male and female TK rats was fed valcyte to ablate dividing progenitor cells and continued the diet until the end of this study. Following week six, all CIE rats experienced two weeks of forced abstinence from CIE-ED, after which they experienced relapse to drinking, extinction, and reinstatement of ethanol seeking sessions. CIE increased ED in female and male rats, with females having higher ethanol consumption during CIE and relapse sessions compared with males. In both sexes, valcyte reduced the levels of Ki-67-labeled progenitor cells in the subgranular zone of the dentate gyrus and did not alter the levels in the medial prefrontal cortex (mPFC). Valcyte increased ED during relapse, increased lever responses during extinction and, interestingly, enhanced latency to extinguish ethanol-seeking behaviors in males. Valcyte reduced the reinstatement of ethanol-seeking behaviors triggered by ethanol cues in females and males. Reduced seeking by valcyte was associated with the normalization of cytokines and chemokines in plasma isolated from trunk blood, indicating a role for progenitor cells in peripheral inflammatory responses. Reduced seeking by valcyte was associated with increases in tight junction protein claudin-5 and oligodendrogenesis in the dentate gyrus and reduction in microglial activity in the dentate gyrus and mPFC in females and males, demonstrating a role for progenitor cells in the dentate gyrus in dependence-induced endothelial and microglial dysfunction. These data suggest that progenitor cells born during withdrawal and abstinence from CIE in the dentate gyrus are aberrant and could play a role in strengthening ethanol memories triggered by ethanol cues via central and peripheral immune responses.


Asunto(s)
Alcoholismo , Comportamiento de Búsqueda de Drogas , Células Madre , Masculino , Femenino , Animales , Ratas , Etanol/toxicidad , Conducta Animal , Envejecimiento , Valganciclovir/farmacología , Caracteres Sexuales , Humanos , Ratas Transgénicas
2.
Front Neurosci ; 17: 1307844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249580
3.
Brain Sci ; 12(8)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35892413

RESUMEN

Humans and rodents have sexually dimorphic immune responses, which could influence the brain's response to a systemic inflammatory insult. Lipopolysaccharide (LPS) is a stimulator of the innate immune system and is routinely used in animal models to study blood-brain barrier (BBB) dysfunction under inflammatory conditions. Therefore, we examined whether inflammatory response to LPS and the associated BBB disruption differed in male and female adult rats. Rats were treated with saline or two injections of 1 mg/kg LPS and studied 24 h after the second LPS injection. Plasma isolated from trunk blood and brain tissue homogenates of the prefrontal cortex (PFC), dorsal striatum (DS), hippocampus, and cerebellum were analyzed for cytokines and chemokines using a 9-plex panel from Meso Scale Discovery. BBB disruption was analyzed with tight junction proteins claudin-5 and VE-cadherin via Western blotting and VEGF by ELISA. This allowed us to compare sex differences in the levels of individual cytokines as well as associations among cytokines and expression of tight junction proteins between the plasma and specific brain regions. Higher levels of interferon-γ, interleukin-10 (IL-10), IL-13, IL-4, CXCL-1, and VEGF in the plasma were revealed compared to the brain homogenates, and higher levels of TNFα, IL-1ß, IL-6, and IL-5 in the PFC were seen compared with plasma and other brain regions in males. Females showed higher levels of plasma CXCL1 and VEGF compared to males, and males showed higher levels of PFC TNFα, IL-6, IL-4, and VEGF compared to females. LPS induced significant increases in plasma cytokines and VEGF in both sexes. LPS did not significantly alter cytokines in brain tissue homogenates, however, it increased chemokines in the PFC, DS, and hippocampus. In the PFC, LPS produced BBB disruption, which is evident as reduced expression of claudin-5 in males and reduced expression of VE-cadherin in both sexes. Taken together, our results reveal significant sex differences in pro-inflammatory cytokine and chemokine levels in plasma and brain that were associated with BBB disruption after LPS, and validate the use of multiplex assay for plasma and brain tissue samples.

4.
J Neurosci Res ; 99(11): 3047-3065, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34496069

RESUMEN

Plasticity in the dentate gyrus (DG) is strongly influenced by ethanol, and ethanol experience alters long-term memory consolidation dependent on the DG. However, it is unclear if DG plasticity plays a role in dysregulation of long-term memory consolidation during abstinence from chronic ethanol experience. Outbred male Wistar rats experienced 7 weeks of chronic intermittent ethanol vapor exposure (CIE). Seventy-two hours after CIE cessation, CIE and age-matched ethanol-naïve Air controls experienced auditory trace fear conditioning (TFC). Rats were tested for cue-mediated retrieval in the fear context either twenty-four hours (24 hr), ten days (10 days), or twenty-one days (21 days) later. CIE rats showed enhanced freezing behavior during TFC acquisition compared to Air rats. Air rats showed significant fear retrieval, and this behavior did not differ at the three time points. In CIE rats, fear retrieval increased over time during abstinence, indicating an incubation in fear responses. Enhanced retrieval at 21 days was associated with reduced structural and functional plasticity of ventral granule cell neurons (GCNs) and reduced expression of synaptic proteins important for neuronal plasticity. Systemic treatment with the drug Isoxazole-9 (Isx-9; small molecule that stimulates DG plasticity) during the last week and a half of CIE blocked altered acquisition and retrieval of fear memories in CIE rats during abstinence. Concurrently, Isx-9 modulated the structural and functional plasticity of ventral GCNs and the expression of synaptic proteins in the ventral DG. These findings identify that abstinence-induced disruption of fear memory consolidation occurs via altered plasticity within the ventral DG, and that Isx-9 prevented these effects.


Asunto(s)
Giro Dentado , Etanol , Animales , Etanol/farmacología , Miedo , Isoxazoles , Masculino , Ratas , Ratas Wistar , Tiofenos
5.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360984

RESUMEN

Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum. Under a fixed-ratio schedule, LV-Cav1 enhanced and LV-shCav1 reduced responding for methamphetamine in an extended access paradigm compared to LV-GFP controls. LV-Cav1 and LV-shCav1 also produced an upward and downward shift in a dose-response paradigm, generating a drug vulnerable/resistant phenotype. LV-Cav1 and LV-shCav1 did not alter responding for sucrose. Under a progressive-ratio schedule, LV-shCav1 generally reduced positive-reinforcing effects of methamphetamine and sucrose as seen by reduced breakpoints. Western blotting confirmed enhanced Cav1 expression in LV-Cav1 rats and reduced Cav1 expression in LV-shCav1 rats. Electrophysiological findings in LV-GFP rats demonstrated an absence of high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in the dorsal striatum after extended access methamphetamine self-administration, indicating methamphetamine-induced occlusion of plasticity. LV-Cav1 prevented methamphetamine-induced plasticity via increasing phosphorylation of calcium calmodulin kinase II, suggesting a mechanism for addiction vulnerability. LV-shCav1 produced a marked deficit in the ability of HFS to produce LTP and, therefore, extended access methamphetamine was unable to alter striatal plasticity, indicating a mechanism for resistance to addiction-like behavior. Our results demonstrate that Cav1 expression and knockdown driven striatal plasticity assist with modulating addiction to drug and nondrug rewards, and inspire new strategies to reduce psychostimulant addiction.


Asunto(s)
Trastornos Relacionados con Anfetaminas/metabolismo , Caveolina 1/metabolismo , Cuerpo Estriado/metabolismo , Potenciación a Largo Plazo , Trastornos Relacionados con Anfetaminas/genética , Trastornos Relacionados con Anfetaminas/fisiopatología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Caveolina 1/genética , Cuerpo Estriado/efectos de los fármacos , Masculino , Metanfetamina/toxicidad , Ratas , Ratas Long-Evans , Recompensa
6.
Neuropsychopharmacology ; 46(11): 1937-1949, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34253856

RESUMEN

Angiogenesis or proliferation of endothelial cells plays a role in brain microenvironment homeostasis. Previously we have shown enhanced expression of markers of angiogenesis in the medial prefrontal cortex during abstinence in an animal model of ethanol dependence induced by chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. Here we report that systemic injections of the angiogenesis inhibitor endostatin reduced relapse to drinking behavior in female CIE-ED rats without affecting relapse to drinking in male CIE-ED rats, and female and male nondependent ED rats. Endostatin did not alter relapse to sucrose drinking in both sexes. Endostatin reduced expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) in all groups; however, rescued expression of tight junction protein claudin-5 in the prelimbic cortex (PLC) of female CIE-ED rats. In both sexes, CIE-ED enhanced microglial activation in the PLC and this was selectively prevented by endostatin in female CIE-ED rats. Endostatin prevented CIE-ED-induced enhanced NF-kB activity and expression and Fos expression in females and did not alter reduced Fos expression in males. Analysis of synaptic processes within the PLC revealed sexually dimorphic adaptations, with CIE-ED reducing synaptic transmission and altering synaptic plasticity in the PLC in females, and increasing synaptic transmission in males. Endostatin prevented the neuroadaptations in the PLC in females via enhancing phosphorylation of CaMKII, without affecting the neuroadaptations in males. Our multifaceted approach is the first to link PLC endothelial cell damage to the behavioral, neuroimmune, and synaptic changes associated with relapse to ethanol drinking in female subjects, and provides a new therapeutic strategy to reduce relapse in dependent subjects.


Asunto(s)
Alcoholismo , Alcoholismo/tratamiento farmacológico , Animales , Endostatinas , Células Endoteliales , Etanol , Femenino , Masculino , Corteza Prefrontal , Ratas
7.
Brain Sci ; 11(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810204

RESUMEN

Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.

8.
Neuropharmacology ; 185: 108438, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33333103

RESUMEN

Alterations in the function of prefrontal cortex (PFC) and hippocampus have been implicated in underlying the relapse to alcohol seeking behaviors in humans and animal models of moderate to severe alcohol use disorders (AUD). Here we used chronic intermittent ethanol vapor exposure (CIE), 21d protracted abstinence following CIE (21d AB), and re-exposure to one vapor session during protracted abstinence (re-exposure) to evaluate the effects of chronic ethanol exposure on basal synaptic function, neuronal excitability and expression of key synaptic proteins that play a role in neuronal excitability in the medial PFC (mPFC) and dentate gyrus (DG). CIE consistently enhanced excitability of layer 2/3 pyramidal neurons in the mPFC and granule cell neurons in the DG. In the DG, this effect persisted during 21d AB. Re-exposure did not enhance excitability, suggesting resistance to vapor-induced effects. Analysis of action potential kinetics revealed that altered afterhyperpolarization, rise time and decay time constants are associated with the altered excitability during CIE, 21d AB and re-exposure. Molecular adaptations that may underlie increases in neuronal excitability under these different conditions were identified. Quantitative polymerase chain reaction of large-conductance potassium (BK) channel subunit mRNA in PFC and DG tissue homogenates did not show altered expression patterns of BK subunits. Western blotting demonstrates enhanced phosphorylation of Ca2⁺/calmodulin-dependent protein kinase II (CaMKII), and reduced phosphorylation of glutamate receptor GluN2A/2B subunits. These results suggest a novel relationship between activity of CaMKII and GluN receptors in the mPFC and DG, and neuronal excitability in these brain regions in the context of moderate to severe AUD.


Asunto(s)
Giro Dentado/efectos de los fármacos , Etanol/administración & dosificación , Etanol/toxicidad , Exposición por Inhalación/efectos adversos , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Giro Dentado/metabolismo , Masculino , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Eur Neuropsychopharmacol ; 42: 22-34, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33279357

RESUMEN

Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence (CIE-PA) produces significant alterations in oligodendrogenesis in the rodent medial prefrontal cortex (mPFC). Specifically, CIE-PA produced an unprecedented increase in premyelinating oligodendroglial progenitor cells and myelin, which have been associated with persistent elevated drinking behaviors during abstinence. The current study used neuroimaging and electron microscopy to evaluate the integrity of enhanced myelin and microstructural deficits underlying enhanced myelination in the mPFC in male rats experiencing forced abstinence for 1 day (D), 7D, 21D and 42D following seven weeks of CIE. In vivo diffusion tensor imaging (DTI) detected altered microstructural integrity in the mPFC and corpus callosum (CC). Altered integrity was characterized as reduced fractional anisotropy (FA) in the CC, and enhanced mean diffusivity (MD) in the mPFC in 7D abstinent rats. Increased MD occurred concomitantly with increases in myelin associated proteins, flayed myelin and enhanced mitochondrial stress in the mPFC in 7D abstinent rats, suggesting that the increases in myelination during abstinence was aberrant. Evaluation of cognitive performance via Pavlovian conditioning in 7D abstinent rats revealed reduced retrieval and recall of fear memories dependent on the mPFC. These findings indicate that forced abstinence from moderate to severe alcohol use disorder produces gray matter damage via myelin dysfunction in the mPFC and that these microstructural changes were associated with deficits in PFC dependent behaviors.


Asunto(s)
Alcoholismo , Disfunción Cognitiva , Abstinencia de Alcohol , Animales , Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión Tensora , Sustancia Gris/diagnóstico por imagen , Masculino , Ratas , Ratas Wistar
10.
Int J Mol Sci ; 21(12)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575871

RESUMEN

Carbonic anhydrase (CA) is abundant in glial cells in the brain and CA type II isoform (CA II) activity in the hippocampus plays an important role in buffering extracellular pH transients produced by neural activity. Chronic ethanol exposure results in respiratory and metabolic acidosis, producing shifts in extracellular pH in the brain and body. These neurophysiological changes by ethanol are hypothesized to contribute to the continued drinking behavior and physical withdrawal behavior in subjects consuming ethanol chronically. We explored whether chronic ethanol self-administration (ethanol drinking, 10% v/v; ED) without or under the influence of chronic intermittent ethanol vapor (CIE-ED) experience alters the expression of CA II in the hippocampus. Postmortem hippocampal tissue analyses demonstrated that CA II levels were enhanced in the hilus region of the hippocampus in ED and CIE-ED rats. We used a novel molecule-4-fluoro-N-(4-sulfamoylphenyl) benzenesulfonamide (4-FS)-a selective CA II inhibitor, to determine whether CA II plays a role in ethanol self-administration in ED and CIE-ED rats and physical withdrawal behavior in CIE-ED rats. 4-FS (20 mg/kg, i.p.) reduced ethanol self-administration in ED rats and physical withdrawal behavior in CIE-ED rats. Postmortem hippocampal tissue analyses demonstrated that 4-FS reduced CA II expression in ED and CIE-ED rats to control levels. In parallel, 4-FS enhanced GABAA receptor expression, reduced ratio of glutamatergic GluN2A/2B receptors and enhanced the expression of Fos, a marker of neuronal activation in the ventral hippocampus in ED rats. These findings suggest that 4-FS enhanced GABAergic transmission and increased activity of neurons of inhibitory phenotypes. Taken together, these findings support the role of CA II in assisting with negative affective behaviors associated with moderate to severe alcohol use disorders (AUD) and that CA II inhibitors are a potential therapeutic target to reduce continued drinking and somatic withdrawal symptoms associated with moderate to severe AUD.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Alcoholismo/tratamiento farmacológico , Anhidrasa Carbónica II/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Sulfonamidas/uso terapéutico , Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/metabolismo , Animales , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratas , Ratas Long-Evans , Síndrome de Abstinencia a Sustancias/metabolismo , Sulfonamidas/química , Bencenosulfonamidas
11.
Brain Struct Funct ; 225(3): 1073-1088, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32246242

RESUMEN

This study sought to determine if reducing dopamine D1 receptor (D1R) expression in the dorsal striatum (DS) via RNA-interference alters methamphetamine self-administration. A lentiviral construct containing a short hairpin RNA (shRNA) was used to knock down D1R expression (D1RshRNA). D1RshRNA in male rats increased responding for methamphetamine (i.v.) under a fixed-ratio schedule in an extended access paradigm, compared to D1R-intact rats. D1RshRNA also produced a vertical shift in a dose-response paradigm and enhanced responding for methamphetamine in a progressive-ratio schedule, generating a drug-vulnerable phenotype. D1RshRNA did not alter responding for sucrose (oral) under a fixed-ratio schedule compared to D1R-intact rats. Western blotting confirmed reduced D1R expression in methamphetamine and sucrose D1RshRNA rats. D1RshRNA reduced the expression of PSD-95 and MAPK-1 and increased the expression of dopamine transporter (DAT) in the DS from methamphetamine, but not sucrose rats. Sucrose density gradient fractionation was performed in behavior-naïve controls, D1RshRNA- and D1R-intact rats to determine the subcellular localization of D1Rs, DAT and D1R signaling proteins. D1Rs, DAT, MAPK-1 and PSD-95 predominantly localized to heavy fractions, and the membrane/lipid raft protein caveolin-1 (Cav-1) and flotillin-1 were distributed equally between buoyant and heavy fractions in controls. Methamphetamine increased localization of PSD-95, Cav-1, and flotillin-1 in D1RshRNA and D1R-intact rats to buoyant fractions. Our studies indicate that reduced D1R expression in the DS increases vulnerability to methamphetamine addiction-like behavior, and this is accompanied by striatal alterations in the expression of DAT and D1R signaling proteins and is independent of the subcellular localization of these proteins.


Asunto(s)
Trastornos Relacionados con Anfetaminas/metabolismo , Cuerpo Estriado/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Metanfetamina/administración & dosificación , Receptores de Dopamina D1/metabolismo , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Cuerpo Estriado/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Masculino , ARN Interferente Pequeño/administración & dosificación , Ratas Long-Evans , Receptores de Dopamina D2/metabolismo
12.
Brain Struct Funct ; 225(3): 1163, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31938933

RESUMEN

The author reports that data for electrophysiology findings reported in Figs. 4 and 5 for control group and Meth Rst group have been published previously (Galinato MH et al., J Neurosci. 2018 Feb 21; 38(8):2029-2042.

13.
Brain Plast ; 6(1): 103-111, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33680849

RESUMEN

Alcohol is one of the oldest pharmacological agents used for its sedative/hypnotic effects, and alcohol abuse and alcohol use disorder (AUD) continues to be major public health issue. AUD is strongly indicated to be a brain disorder, and the molecular and cellular mechanism/s by which alcohol produces its effects in the brain are only now beginning to be understood. In the brain, synaptic plasticity or strengthening or weakening of synapses, can be enhanced or reduced by a variety of stimulation paradigms. Synaptic plasticity is thought to be responsible for important processes involved in the cellular mechanisms of learning and memory. Long-term potentiation (LTP) is a form of synaptic plasticity, and occurs via N-methyl-D-aspartate type glutamate receptor (NMDAR or GluN) dependent and independent mechanisms. In particular, NMDARs are a major target of alcohol, and are implicated in different types of learning and memory. Therefore, understanding the effect of alcohol on synaptic plasticity and transmission mediated by glutamatergic signaling is becoming important, and this will help us understand the significant contribution of the glutamatergic system in AUD. In the first part of this review, we will briefly discuss the mechanisms underlying long term synaptic plasticity in the dorsal striatum, neocortex and the hippocampus. In the second part we will discuss how alcohol (ethanol, EtOH) can modulate long term synaptic plasticity in these three brain regions, mainly from neurophysiological and electrophysiological studies. Taken together, understanding the mechanism(s) underlying alcohol induced changes in brain function may lead to the development of more effective therapeutic agents to reduce AUDs.

14.
Brain Plast ; 6(1): 113-122, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33680850

RESUMEN

BACKGROUND: Acute (ex vivo) and chronic (in vivo) alcohol exposure induces neuroplastic changes in the dorsal striatum, a critical region implicated in instrumental learning. OBJECTIVE: Sex differences are evident in alcohol reward and reinforcement, with female rats consuming higher amount of alcohol in operant paradigms compared to male rats. However, sex differences in the neuroplastic changes produced by acute alcohol in the dorsal striatum have been unexplored. METHODS: Using electrophysiological recordings from dorsal striatal slices obtained from adult male and female rats, we investigated the effects of ex vivo ethanol exposure on synaptic transmission and synaptic plasticity. Ethanol (44 mM) enhanced basal synaptic transmission in both sexes. Ethanol also enhanced long-term potentiation in both sexes. Other measures of synaptic plasticity including paired-pulse ratio were unaltered by ethanol in both sexes. RESULTS: The results suggest that alterations in synaptic plasticity induced by acute ethanol, at a concentration associated with intoxication, could play an important role in alcohol-induced experience-dependent modification of corticostriatal circuits underlying the learning of goal-directed instrumental actions and formation of habits mediating alcohol seeking and taking. CONCLUSIONS: Taken together, understanding the mechanism(s) underlying alcohol induced changes in corticostriatal function may lead to the development of more effective therapeutic agents to reduce habitual drinking and seeking associated with alcohol use disorders.

15.
Behav Brain Res ; 377: 112235, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31521739

RESUMEN

Adult female rats show greater running output compared with age-matched male rats, and the midbrain dopaminergic system may account for behavioral differences in running output. However, it is unknown if the lower running output in adult males can be regulated by wheel running experience during adolescence, and whether wheel running experience during adolescence will diminish the sex differences in running output during adulthood. We therefore determined and compared the exercise output in adult male and female rats that either had initiated voluntary wheel running only during adulthood or during adolescence. Our results demonstrate that running output in adult males were significantly higher when running was initiated during adolescence, and this higher running output was not significantly different from females. Running output did not differ during adulthood in females when wheel running was initiated during adolescence or during adulthood. Higher running output in females was associated with reduced expression of tyrosine hydroxylase and hyperactivation of calcium/calmodulin-dependent protein kinase II (CaMKII) in the dorsal striatum. Notably, running during adolescence-induced higher exercise output in adult males was associated with hyperactivation of CaMKII in the dorsal striatum, indicating a mechanistic role for CaMKII in running output. Together, the present results indicate sexually dimorphic adaptive biochemical changes in the dorsal striatum in rats that had escalated running activity, and highlight the importance of including sex as a biological variable in exploring neuroplasticity changes that predict enhanced exercise output in a voluntary physical activity paradigm.


Asunto(s)
Conducta Animal/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neostriado/metabolismo , Carrera/fisiología , Caracteres Sexuales , Tirosina 3-Monooxigenasa/metabolismo , Factores de Edad , Animales , Femenino , Masculino , Modelos Animales , Fosforilación/fisiología , Ratas , Ratas Long-Evans
16.
Brain Sci ; 9(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835746

RESUMEN

Chronic intermittent ethanol vapor exposure (CIE) in rodents produces reliable and high blood ethanol concentration and behavioral symptoms associated with moderate to severe alcohol use disorder (AUD)-for example, escalation of operant ethanol self-administration, a feature suggestive of transition from recreational to addictive use, is a widely replicated behavior in rats that experience CIE. Herein, we present evidence from a subset of rats that do not demonstrate escalation of ethanol self-administration following seven weeks of CIE. These low responders (LR) maintain low ethanol self-administration during CIE, demonstrate lower relapse to drinking during abstinence and reduced reinstatement of ethanol seeking triggered by ethanol cues when compared with high responders (HR). We examined the blood ethanol levels in LR and HR rats during CIE and show higher levels in LR compared with HR. We also examined peak corticosterone levels during CIE and show that LR rats have higher levels compared with HR rats. Lastly, we evaluated the levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the nucleus accumbens shell and reveal that the activity of CaMKII, which is autophosphorylated at site Tyr-286, is significantly reduced in HR rats compared with LR rats. These findings demonstrate that dysregulation of the hypothalamic-pituitary-adrenal axis activity and plasticity-related proteins regulating molecular memory in the nucleus accumbens shell are associated with higher ethanol-drinking and -seeking in HR rats. Future mechanistic studies should evaluate CaMKII autophosphorylation-dependent remodeling of glutamatergic synapses in the ventral striatum as a plausible mechanism for the CIE-induced enhanced ethanol drinking and seeking behaviors.

17.
Brain Sci ; 9(11)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752398

RESUMEN

The dorsal striatum is important for the development of drug addiction; however, the role of dopamine D1 receptor (D1R) expressing medium-sized spiny striatonigral (direct pathway) neurons (D1-MSNs) in regulating excessive methamphetamine intake remains elusive. Here we seek to determine if modulating D1-MSNs in the dorsal striatum alters methamphetamine self-administration in animals that have demonstrated escalation of self-administration. A viral vector-mediated approach was used to induce expression of the inhibitory (Gi coupled-hM4D) or stimulatory (Gs coupled-rM3D) designer receptors exclusively activated by designer drugs (DREADDs) engineered to specifically respond to the exogenous ligand clozapine-N-oxide (CNO) selectively in D1-MSNs in the dorsal striatum. CNO in animals expressing hM4D increased responding for methamphetamine compared to vehicle in a within subject treatment paradigm. CNO in animals that did not express DREADDs (DREADD naïve-CNO) or expressed rM3D did not alter responding for methamphetamine, demonstrating specificity for hM4D-CNO interaction in increasing self-administration. Postmortem tissue analysis reveals that hM4D-CNO animals had reduced Fos immunoreactivity in the dorsal striatum compared to rM3D-CNO animals and DREADD naïve-CNO animals. Cellular mechanisms in the dorsal striatum in hM4D-CNO animals reveal enhanced expression of D1R and Ca2+/calmodulin-dependent kinase II (CaMKII). Conversely, rM3D-CNO animals had enhanced activity of extracellular signal-regulated kinase (Erk1/2) and Akt in the dorsal striatum, supporting rM3D-CNO interaction in these animals compared with drug naïve controls, DREADD naïve-CNO and hM4D-CNO animals. Our studies indicate that transient inhibition of D1-MSNs-mediated strengthening of methamphetamine addiction-like behavior is associated with cellular adaptations that support dysfunctional dopamine signaling in the dorsal striatum.

18.
Front Neurosci ; 12: 849, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524229

RESUMEN

The discovery of non-coding RNAs (ncRNAs)has been one of the central findings from early genomic sequencing studies. Not only was the presence of these genes unknown previously, it was the staggering disproportionate share of the genome that was predicted to be encoded by ncRNAs that was truly significant in genomic research. Over the years the function of various classes of these ncRNAs has been revealed. One of the first and enduring regulatory programs associated with these factors was development. In the neurosciences, the discovery of adult derived populations of dividing cells within the brain was equally substantial. The brain was hypothesized to be plastic only in its neuronal connectivity, but the discovery of the generation of new neurons was a novel mechanism of neuronal and behavioral plasticity. The process of adult neurogenesis resembles early neuronal development and has been found to share many parallels in the proper stages of specified genetic programs. Adult neurogenesis has also been found to play a role in learning and memory involved in particular hippocampal-dependent behaviors. Substance use disorders (SUDs) are an example of a behavioral condition that is associated with and possibly driven by hippocampal alterations. Our laboratory has determined that hippocampal adult neurogenesis is necessary for a rodent model of methamphetamine relapse. Due to the previous research on ncRNAs in development and in other brain regions involved in SUDs, we posit that ncRNAs may play a role in adult neurogenesis associated with this disorder. This review will cover the regulatory mechanisms of various classes of ncRNAs on the coordinated genetic program associated with adult neurogenesis with a special focus on how these programs could be dysregulated in SUDs.

19.
Brain Sci ; 8(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487415

RESUMEN

The present study examined differences in operant responses in adult male and female rats during distinct phases of addiction. Males and females demonstrated escalation in methamphetamine (0.05 mg/kg, i.v.) intake with females showing enhanced latency to escalate, and bingeing. Following protracted abstinence, females show reduced responses during extinction, and have greater latency to extinguish compared with males, indicating reduced craving. Females demonstrated lower context-driven reinstatement compared to males, indicating that females have less motivational significance to the context associated with methamphetamine. Whole-cell patch-clamp recordings on dentate gyrus (DG) granule cell neurons (GCNs) were performed in acute brain slices from controls and methamphetamine experienced male and female rats, and neuronal excitability was evaluated from GCNs. Reinstatement of methamphetamine seeking reduced spiking in males, and increased spiking in females compared to controls, demonstrating distinct neuroadaptations in intrinsic excitability of GCNs in males and females. Reduced excitability of GCNs in males was associated with enhanced levels of neural progenitor cells, expression of plasticity-related proteins including CaMKII, and choline acetyltransferase in the DG. Enhanced excitability in females was associated with an increased GluN2A/2B ratio, indicating changes in postsynaptic GluN subunit composition in the DG. Altered intrinsic excitability of GCNs was associated with reduced mossy fiber terminals in the hilus and pyramidal projections, demonstrating compromised neuroplasticity in the DG in both sexes. The alterations in excitability, plasticity-related proteins, and mossy fiber density were correlated with enhanced activation of microglial cells in the hilus, indicating neuroimmune responses in both sexes. Together, the present results indicate sexually dimorphic adaptive biochemical changes in excitatory neurotransmitter systems in the DG and highlight the importance of including sex as a biological variable in exploring neuroplasticity and neuroimmune changes that predict enhanced relapse to methamphetamine-seeking behaviors.

20.
Neuropharmacology ; 143: 239-249, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30273595

RESUMEN

Adult male and female GFAP-TK transgenic rats experienced six weeks of chronic intermittent ethanol vapor inhalation (CIE). During the last week of CIE, a subset of male and female TK rats were fed with Valcyte to ablate neural progenitor cells (NPCs). Seventy-two hours after CIE cessation, all CIE and age-matched ethanol naïve controls experienced auditory trace fear conditioning (TFC). Twenty-four hours later all animals were tested for cue-mediated retrieval in the fear context. Adult male CIE rats showed a significant burst in NPCs paralleled by reduction in fear retrieval compared to naïve controls and Valcyte treated CIE rats. Adult female CIE rats did not show a burst in NPCs and showed similar fear retrieval compared to naïve controls and Valcyte treated CIE rats, indicating that CIE-mediated impairment in fear memory and its regulation by NPCs was sex dependent. Valcyte significantly reduced Ki-67 and NeuroD labeled cells in the dentate gyrus (DG) in both sexes, demonstrating a role for NPCs in reduced fear retrieval in males. Valcyte prevented adaptations in GluN2A receptor expression and synaptoporin density in the DG in males, indicating that NPCs contributed to alterations in plasticity-related proteins and mossy fiber projections that were associated with reduced fear retrieval. These data suggest that DG NPCs born during withdrawal and early abstinence from CIE are aberrant, and could play a role in weakening long-term memory consolidation dependent on the hippocampus.


Asunto(s)
Alcoholismo/fisiopatología , Miedo/fisiología , Hipocampo/fisiopatología , Memoria/fisiología , Células-Madre Neurales/fisiología , Alcoholismo/patología , Alcoholismo/psicología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Depresores del Sistema Nervioso Central/efectos adversos , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Etanol/efectos adversos , Miedo/efectos de los fármacos , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Antígeno Ki-67/metabolismo , Masculino , Memoria/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Ratas Long-Evans , Ratas Transgénicas , Caracteres Sexuales , Sinaptofisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...