Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Rev Rep ; 20(3): 845-851, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38183535

RESUMEN

The mammal retina does not have the capacity to regenerate throughout life, although some stem and progenitor cells persist in the adult retina and might retain multipotentiality, as previously described in many tissues. In this work we demonstrate the presence of a small lineage- Sca-1+ cell population in the adult mouse retina which expresses functional TLR2 receptors as in vitro challenge with the pure TLR2 agonist Pam3CSK4 increases cell number and upregulates TLR2. Therefore, this population could be of interest in neuroregeneration studies to elucidate its role in these processes.


Asunto(s)
Células Madre , Receptor Toll-Like 2 , Ratones , Animales , Receptor Toll-Like 2/genética , Diferenciación Celular/fisiología , Retina , Mamíferos
2.
Cell Death Dis ; 14(11): 711, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914688

RESUMEN

Central areolar choroidal dystrophy is an inherited disorder characterized by progressive choriocapillaris atrophy and retinal degeneration and is usually associated with mutations in the PRPH2 gene. We aimed to generate and characterize a mouse model with the p.Arg195Leu mutation previously described in patients. Heterozygous (Prph2WT/KI) and homozygous (Prph2KI/KI) mice were generated using the CRISPR/Cas9 system to introduce the p.Arg195Leu mutation. Retinal function was assessed by electroretinography and optomotor tests at 1, 3, 6, 9, 12, and 20 months of age. The structural integrity of the retinas was evaluated at the same ages using optical coherence tomography. Immunofluorescence and transmission electron microscopy images of the retina were also analyzed. Genetic sequencing confirmed that both Prph2WT/KI and Prph2KI/KI mice presented the p.Arg195Leu mutation. A progressive loss of retinal function was found in both mutant groups, with significantly reduced visual acuity from 3 months of age in Prph2KI/KI mice and from 6 months of age in Prph2WT/KI mice. Decreased amplitudes in the electroretinography responses were observed from 1 month of age in Prph2KI/KI mice and from 6 months of age in Prph2WT/KI mice. Morphological analysis of the retinas correlated with functional findings, showing a progressive decrease in retinal thickness of mutant mice, with earlier and more severe changes in the homozygous mutant mice. We corroborated the alteration of the outer segment structure, and we found changes in the synaptic connectivity in the outer plexiform layer as well as gliosis and signs of microglial activation. The new Prph2WT/KI and Prph2KI/KI murine models show a pattern of retinal degeneration similar to that described in human patients with central areolar choroidal dystrophy and appear to be good models to study the mechanisms involved in the onset and progression of the disease, as well as to test the efficacy of new therapeutic strategies.


Asunto(s)
Degeneración Retiniana , Animales , Humanos , Lactante , Ratones , Electrorretinografía , Microglía , Mutación/genética , Periferinas/genética , Retina , Degeneración Retiniana/genética
3.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003256

RESUMEN

Ischemia is the main cause of cell death in retinal diseases such as vascular occlusions, diabetic retinopathy, glaucoma, or retinopathy of prematurity. Although excitotoxicity is considered the primary mechanism of cell death during an ischemic event, antagonists of glutamatergic receptors have been unsuccessful in clinical trials with patients suffering ischemia or stroke. Our main purpose was to analyze if the transient receptor potential channel 7 (TRPM7) could contribute to retinal dysfunction in retinal pathologies associated with ischemia. By using an experimental model of acute retinal ischemia, we analyzed the changes in retinal function by electroretinography and the changes in retinal morphology by optical coherence tomography (OCT) and OCT-angiography (OCTA). Immunohistochemistry was performed to assess the pattern of TRPM7 and its expression level in the retina. Our results show that ischemia elicited a decrease in retinal responsiveness to light stimuli along with reactive gliosis and a significant increase in the expression of TRPM7 in Müller cells. TRPM7 could emerge as a new drug target to be explored in retinal pathologies associated with ischemia.


Asunto(s)
Enfermedades de la Retina , Canales Catiónicos TRPM , Animales , Humanos , Recién Nacido , Ratones , Isquemia/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Reperfusión/efectos adversos , Retina/metabolismo , Enfermedades de la Retina/metabolismo , Vasos Retinianos/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
4.
Pflugers Arch ; 475(6): 667-690, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36884064

RESUMEN

This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.


Asunto(s)
Médula Suprarrenal , Células Cromafines , Animales , Calcio/metabolismo , Células Cromafines/metabolismo , Médula Suprarrenal/metabolismo , Catecolaminas/metabolismo , Epinefrina , Exocitosis/fisiología
5.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499084

RESUMEN

The purinergic receptor P2X7 (P2X7R) is implicated in all neurodegenerative diseases of the central nervous system. It is also involved in the retinal degeneration associated with glaucoma, age-related macular degeneration, and diabetic retinopathy, and its overexpression in the retina is evident in these disorders. Retinitis pigmentosa is a progressive degenerative disease that ultimately leads to blindness. Here, we investigated the expression of P2X7R during disease progression in the rd10 mouse model of RP. As the purinergic receptor P2X4 is widely co-expressed with P2X7R, we also studied its expression in the retina of rd10 mice. The expression of P2X7R and P2X4R was examined by immunohistochemistry, flow cytometry, and western blotting. In addition, we analyzed retinal functionality by electroretinographic recordings of visual responses and optomotor tests and retinal morphology. We found that the expression of P2X7R and P2X4R increased in rd10 mice concomitant with disease progression, but with different cellular localization. Our findings suggest that P2X7R and P2X4R might play an important role in RP progression, which should be further analyzed for the pharmacological treatment of inherited retinal dystrophies.


Asunto(s)
Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Retinitis Pigmentosa , Animales , Ratones , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Electrorretinografía , Ratones Endogámicos C57BL , Receptores Purinérgicos P2X7/genética , Retinitis Pigmentosa/genética , Receptores Purinérgicos P2X4/genética
6.
Front Neuroanat ; 16: 984052, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225228

RESUMEN

Multiple gene mutations have been associated with inherited retinal dystrophies (IRDs). Despite the spectrum of phenotypes caused by the distinct mutations, IRDs display common physiopathology features. Cell death is accompanied by inflammation and oxidative stress. The vertebrate retina has several attributes that make this tissue vulnerable to oxidative and nitrosative imbalance. The high energy demands and active metabolism in retinal cells, as well as their continuous exposure to high oxygen levels and light-induced stress, reveal the importance of tightly regulated homeostatic processes to maintain retinal function, which are compromised in pathological conditions. In addition, the subsequent microglial activation and gliosis, which triggers the secretion of pro-inflammatory cytokines, chemokines, trophic factors, and other molecules, further worsen the degenerative process. As the disease evolves, retinal cells change their morphology and function. In disease stages where photoreceptors are lost, the remaining neurons of the retina to preserve their function seek out for new synaptic partners, which leads to a cascade of morphological alterations in retinal cells that results in a complete remodeling of the tissue. In this review, we describe important molecular and morphological changes in retinal cells that occur in response to oxidative stress and the inflammatory processes underlying IRDs.

7.
Biomed Pharmacother ; 149: 112911, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36068774

RESUMEN

This review focuses on retina degeneration occurring during glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP), and on the potential therapeutic use of triads of repositioned medicines, addressed to distinct but complementary targets, to prevent, delay or stop retina cell death. Although myriad pathogenic mechanisms have been implicated in these disorders, common signaling pathways leading to apoptotic cell death to all of them, and to all neurodegenerative diseases are (i) calcium dyshomeostasis/excitotoxicity; (ii) oxidative stress/mitochondrial dysfunction, and (iii) neuroinflammation/P2X7 receptor activation. From a therapeutic point of view, it is relevant to consider the multitarget approach based on the use of combined medicines acting on complementary pathogenic mechanisms that has been highly successful in the treatment of chronic diseases such as cancer, AIDS, pain, hypertension, Parkinson's disease, cardiac failure, depression, or the epilepsies as the basic mechanisms of cell death do not differ between the different CNS degenerative diseases. We suggest the multi-target therapy approach could be more effective compared with single-drug treatments. Used at doses lower than standard, these triads may also be safer and more efficient. After the establishment of a proof-of-concept in animal models of retinal degeneration, potential successful preclinical trials of such combinations may eventually drive to test this concept in clinical trials in patients, first to evaluate the safety and efficacy of the drug combinations in humans and then their therapeutic advantages, if any, seeking the prevention and/or the delay of retina degeneration and blindness.


Asunto(s)
Retinopatía Diabética , Enfermedades Neurodegenerativas , Degeneración Retiniana , Animales , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuroprotección , Retina/metabolismo , Degeneración Retiniana/tratamiento farmacológico
8.
Antioxidants (Basel) ; 11(6)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35739983

RESUMEN

Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species' accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.

9.
Antioxidants (Basel) ; 11(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35740087

RESUMEN

Retinal degenerative diseases, including inherited retinal dystrophies (IRDs) and acquired multifactorial diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR) or ganglion cell damage secondary to glaucoma or other pathologies, are the main causes of blindness in developed countries [...].

11.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34667124

RESUMEN

A high-fat diet (HFD) can induce hyperglycemia and metabolic syndromes that, in turn, can trigger visual impairment. To evaluate the acute effects of HFD feeding on retinal degeneration, we assessed retinal function and morphology, inflammatory state, oxidative stress, and gut microbiome in dystrophic retinal degeneration 10 (rd10) mice, a model of retinitis pigmentosa, fed an HFD for 2 to 3 wk. Short-term HFD feeding impaired retinal responsiveness and visual acuity and enhanced photoreceptor degeneration, microglial cell activation, and Müller cell gliosis. HFD consumption also triggered the expression of inflammatory and oxidative markers in rd10 retinas. Finally, an HFD caused gut microbiome dysbiosis, increasing the abundance of potentially proinflammatory bacteria. Thus, HFD feeding drives the pathological processes of retinal degeneration by promoting oxidative stress and activating inflammatory-related pathways. Our findings suggest that consumption of an HFD could accelerate the progression of the disease in patients with retinal degenerative disorders.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Degeneración Retiniana/etiología , Retinitis Pigmentosa/etiología , Animales , Muerte Celular , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Microbioma Gastrointestinal , Intolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Modelos Biológicos , Estrés Oxidativo , Células Fotorreceptoras de Vertebrados/patología , Retina/metabolismo , Retina/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
12.
Invest Ophthalmol Vis Sci ; 61(10): 1, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32744596

RESUMEN

Purpose: Retinitis pigmentosa (RP) is a blinding neurodegenerative disease of the retina that can be affected by many factors. The present study aimed to analyze the effect of different environmental light intensities in rd10 mice retina. Methods: C57BL/6J and rd10 mice were bred and housed under three different environmental light intensities: scotopic (5 lux), mesopic (50 lux), and photopic (300 lux). Visual function was studied using electroretinography and optomotor testing. The structural and morphological integrity of the retinas was evaluated by optical coherence tomography imaging and immunohistochemistry. Additionally, inflammatory processes and oxidative stress markers were analyzed by flow cytometry and western blotting. Results: When the environmental light intensity was higher, retinal function decreased in rd10 mice and was accompanied by light-dependent photoreceptor loss, followed by morphological alterations, and synaptic connectivity loss. Moreover, light-dependent retinal degeneration was accompanied by an increased number of inflammatory cells, which became more activated and phagocytic, and by an exacerbated reactive gliosis. Furthermore, light-dependent increment in oxidative stress markers in rd10 mice retina pointed to a possible mechanism for light-induced photoreceptor degeneration. Conclusions: An increase in rd10 mice housing light intensity accelerates retinal degeneration, activating cell death, oxidative stress pathways, and inflammatory cells. Lighting intensity is a key factor in the progression of retinal degeneration, and standardized lighting conditions are advisable for proper analysis and interpretation of experimental results from RP animal models, and specifically from rd10 mice. Also, it can be hypothesized that light protection could be an option to slow down retinal degeneration in some cases of RP.


Asunto(s)
Inflamación/etiología , Iluminación/efectos adversos , Estrés Oxidativo/efectos de la radiación , Traumatismos Experimentales por Radiación/etiología , Retina/efectos de la radiación , Degeneración Retiniana/etiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Citometría de Flujo , Inflamación/fisiopatología , Masculino , Visión Mesópica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Visión Nocturna/fisiología , Reacción en Cadena de la Polimerasa , Dosis de Radiación , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/fisiopatología , Retina/fisiopatología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología , cis-trans-Isomerasas/genética
13.
Med Res Rev ; 40(6): 2427-2465, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32677086

RESUMEN

Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs. As purinergic P2X7 receptors (P2X7Rs) are gatekeepers of inflammation, they could be developed as drug targets for NDDs. Herein, we review this challenging hypothesis and comment on the numerous studies that have investigated P2X7Rs, emphasizing their molecular structure and functions, as well as their role in inflammation. Then, we elaborate on research undertaken in the field of medicinal chemistry to determine potential P2X7R antagonists. Subsequently, we review the state of neuroinflammation and P2X7R expression in the brain, in animal models and patients suffering from AD, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and retinal degeneration. Next, we summarize the in vivo studies testing the hypothesis that by mitigating neuroinflammation, P2X7R blockers afford neuroprotection, increasing neuroplasticity and neuronal repair in animal models of NDDs. Finally, we reviewed previous and ongoing CTs investigating compounds directed toward targets associated with NDDs; we propose that CTs with P2X7R antagonists should be initiated. Despite the high expectations for putative P2X7Rs antagonists in various central nervous system diseases, the field is moving forward at a relatively slow pace, presumably due to the complexity of P2X7Rs. A better pharmacological approach to combat NDDs would be a dual strategy, combining P2X7R antagonism with drugs targeting a selective pathway in a given NDD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Preparaciones Farmacéuticas , Animales , Humanos , Ratones , Enfermedades Neurodegenerativas/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7
14.
Cell Physiol Biochem ; 54(1): 142-159, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32028545

RESUMEN

BACKGROUND/AIMS: It is well established that oxidative stress and inflammation are common pathogenic features of retinal degenerative diseases. ITH12674 is a novel compound that induces the transcription factor Nrf2; in so doing, the molecule exhibits anti-inflammatory, and antioxidant properties, and affords neuroprotection in rat cortical neurons subjected to oxidative stress. We here tested the hypothesis that ITH12674 could slow the retinal degeneration that causes blindness in rd10 mice, a model of retinitis pigmentosa. METHODS: Animals were intraperitoneally treated with 1 or 10 mg/Kg ITH12674 or placebo from P16 to P30. At P30, retinal functionality and visual acuity were analyzed by electroretinography and optomotor test. By immunohistochemistry we quantified the photoreceptor rows and analyzed their morphology and connectivity. Oxidative stress and inflammatory state was studied by Western blot, and microglia reactivity was monitored by flow cytometry. The blood-brain barrier permeation of ITH12674 was evaluated using a PAMPA-BBB assay. RESULTS: In rd10 mice treated with 10 mg/Kg of the compound, the following changes were observed (with respect to placebo): (i) a decrease of vision loss with higher scotopic a- and b-waves; (ii) increased visual acuity; (iii) preservation of cone photoreceptors morphology, as well as their synaptic connectivity; (iv) reduced expression of TNF-α and NF-κB; (v) increased expression of p38 MAPK and Atg12-Atg5 complex; and (vi) decreased CD11c, MHC class II and CD169 positive cell populations. CONCLUSION: These data support the view that a Nrf2 inducer compound may arise as a new therapeutic strategy to combat retinal neurodegeneration. At present, we are chemically optimising compound ITH12674 with the focus on improving its neuroprotective potential in retinal neurodegenerative diseases.


Asunto(s)
Isotiocianatos/uso terapéutico , Melatonina/análogos & derivados , Factor 2 Relacionado con NF-E2/agonistas , Retinitis Pigmentosa/tratamiento farmacológico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Isotiocianatos/química , Isotiocianatos/farmacología , Masculino , Melatonina/química , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/patología , Retina/efectos de los fármacos , Retina/metabolismo , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factor de Necrosis Tumoral alfa/metabolismo , Agudeza Visual/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Prog Retin Eye Res ; 77: 100828, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911236

RESUMEN

Optical coherence tomography (OCT) and OCT angiography (OCTA) have been a technological breakthrough in the diagnosis, treatment, and follow-up of many retinal diseases, thanks to its resolution and its ability to inform of the retinal state in seconds, which gives relevant information about retinal degeneration. In this review, we present an immunohistochemical description of the human and mice retina and we correlate it with the OCT bands in health and pathological conditions. Here, we propose an interpretation of the four outer hyperreflective OCT bands with a correspondence to retinal histology: the first and innermost band as the external limiting membrane (ELM), the second band as the cone ellipsoid zone (EZ), the third band as the outer segment tips phagocytosed by the pigment epithelium (PhaZ), and the fourth band as the mitochondria in the basal portion of the RPE (RPEmitZ). The integrity of these bands would reflect the health of photoreceptors and retinal pigment epithelium. Moreover, we describe how the vascular plexuses vary in different regions of the healthy human and mice retina, using OCTA and immunohistochemistry. In humans, four, three, two or one plexuses can be observed depending on the distance from the fovea. Also, specific structures such as vascular loops in the intermediate capillary plexus, or spider-like structures of interconnected capillaries in the deep capillary plexus are found. In mice, three vascular plexuses occupy the whole retina, except in the most peripheral retina where only two plexuses are found. These morphological issues should be considered when assessing a pathology, as some retinal diseases are associated with structural changes in blood vessels. Therefore, the analysis of OCT bands and OCTA vascular plexuses may be complementary for the diagnosis and prognosis of retinal degenerative processes, useful to assess therapeutic approaches, and it is usually correlated to visual acuity.


Asunto(s)
Angiografía con Fluoresceína , Interpretación de Imagen Asistida por Computador , Degeneración Retiniana/patología , Vasos Retinianos/patología , Tomografía de Coherencia Óptica , Animales , Humanos , Fibras Nerviosas/patología , Células Ganglionares de la Retina/patología
16.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261700

RESUMEN

Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.


Asunto(s)
Envejecimiento/patología , Ritmo Circadiano , Enfermedades Neurodegenerativas/etiología , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Envejecimiento/metabolismo , Animales , Humanos , Células Ganglionares de la Retina/patología
17.
Front Cell Neurosci ; 13: 59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873007

RESUMEN

The innate immune Toll-like receptor (TLR) family plays essential roles in cell proliferation, survival and function of the central nervous system. However, the way in which TLRs contribute to the development and maintenance of proper retinal structure and function remains uncertain. In this work, we assess the effect of genetic TLR4 deletion on the morphology and function of the retina in mice. Visual acuity and retinal responsiveness were evaluated in TLR4 knockout and wild type C57BL/6J control mice by means of an optomotor test and electroretinography, respectively, from P20 to P360. Retinal structure was also analyzed in both strains using confocal and electron microscopy. ERG data showed impaired retinal responsiveness in TLR4 KO mice, in comparison to wild type animals. The amplitudes of the scotopic a-waves were less pronounced in TLR4-deficient mice than in wild-type animals from P30 to P360, and TLR4 KO mice presented scotopic b-wave amplitudes smaller than those of age-matched control mice at all ages studied (P20 to P360). Visual acuity was also relatively poorer in TLR4 KO as compared to C57BL/6J mice from P20 to P360, with significant differences at P30 and P60. Immunohistochemical analysis of retinal vertical sections showed no differences between TLR4 KO and C57BL/6J mice, in terms of either photoreceptor number or photoreceptor structure. Horizontal cells also demonstrated no morphological differences between TLR4 KO and wild-type mice. However, TLR4 KO mice exhibited a lower density of bipolar cells (15% less at P30) and thus fewer bipolar cell dendrites than the wild type control mouse, even though both confocal and electron microscopy images showed no morphologic abnormalities in the synaptic contacts between the photoreceptors and second order neurons. Microglial cell density was significantly lower (26% less at P30) in TLR4 KO mice as compared to wild-type control mice. These results suggest that TLR4 deletion causes functional alterations in terms of visual response and acuity, probably through the loss of bipolar cells and microglia, but this receptor is not essential for the processing of visual information in the retina.

18.
Exp Eye Res ; 180: 192-199, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30605663

RESUMEN

Ocular pathologies and blindness have been linked to circadian disorders. In previous studies, our group has demonstrated that retinitis pigmentosa is associated with degenerative changes in the melanopsin system and weaker circadian patterns. We have also shown that cannabinoids preserve retinal structure and function in dystrophic P23H rats. This study is consequently aimed at examining whether the morphologic and functional rescue of retinal degeneration by cannabinoids is associated with amelioration of circadian parameters. The synthetic cannabinoid HU210 (100 µg/kg, i.p.) or vehicle were administered to transgenic P23H rats three times per week, from postnatal day 24-90. Sprague-Dawley rats were used as a healthy control group. Locomotor activity and scotopic electroretinograms were recorded, and the retinal structure was analyzed at the end of the experiment. The ERG a- and b-wave amplitudes and photoreceptor cell number were more deteriorated in vehicle-administered P23H rats as compared to P23H rats treated with HU210. In cannabinoid-administered P23H rats, the locomotor activity circadian rhythms showed less disturbance than that observed in vehicle-administered P23H rats, the latter showing lower values for mesor, amplitude, acrophase, percentage of variance and non-parametric variables. A positive linear correlation was found between retinal values and circadian parameters of locomotor activity from P23H rats. This study thus provides evidence of a positive correlation between cannabinoid-mediated rescue of retinal structure and function and improvement of circadian rhythmicity.


Asunto(s)
Cannabinoides/uso terapéutico , Ritmo Circadiano/efectos de los fármacos , Dronabinol/análogos & derivados , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Animales , Ritmo Circadiano/fisiología , Dronabinol/uso terapéutico , Electrorretinografía , Masculino , Actividad Motora/fisiología , Visión Nocturna/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Retina/fisiopatología , Degeneración Retiniana/fisiopatología
19.
Cell Death Dis ; 9(3): 350, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500424

RESUMEN

Retinal neurodegenerative diseases involve a scenario of inflammation and cell death that leads to morphological alterations and visual impairment. Non-ocular inflammatory processes could affect neurodegenerative retinal disorders and their progression, at least in part by activating microglial cells and releasing pro-inflammatory cytokines. Our purpose was to study the consequences of a systemic inflammatory process in the progression of retinal degeneration in P23H rats, a retinitis pigmentosa (RP) model. In order to induce a mild chronic systemic inflammation, we administered low doses of lipopolysaccharide (LPS) from age P20 to P60 to dystrophic P23H rats and healthy SD rats. Visual responsiveness was assessed by electroretinography (ERG). The morphological state of the retinas was analyzed by fluorescent immunohistochemistry (IHC), evaluating the number, morphology, and connectivity of different neuronal populations by means of cell type-specific markers. Microglia density, distribution, and degree of activation were evaluated by IHC and flow cytometry. The expression levels of inflammation- and apoptosis-related genes were analyzed by qRT-PCR arrays. Low-dose LPS administration did not induce significant functional or morphological changes in the retina of SD rats, although at the molecular level, we detected expression changes in genes related to apoptosis. Otherwise, systemic injection of LPS into P23H rats induced a further deterioration in the ERG response, with greater loss of photoreceptors and worsening of synaptic connectivity, accompanied by increasing numbers of microglial cells, which also showed a more intense activation state. Several inflammation- and apoptosis-related genes were upregulated. Our results indicate that chronic exacerbation of the inflammatory response in response to LPS accelerates neurodegeneration in dystrophic P23H rats, suggesting that in patients with ocular neurodegenerative diseases, peripheral damage, as a systemic infection or chronic inflammatory process, could accelerate disease progression, and should be taken into account in order to select an appropriate therapy to revert, block or slow-down the degenerative process.


Asunto(s)
Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Análisis de Varianza , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Electrorretinografía , Expresión Génica , Gliosis/inducido químicamente , Inflamación/genética , Lipopolisacáridos/administración & dosificación , Microglía/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo
20.
PLoS One ; 12(5): e0177998, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542454

RESUMEN

Successful drug therapies for treating ocular diseases require effective concentrations of neuroprotective compounds maintained over time at the site of action. The purpose of this work was to assess the efficacy of intravitreal controlled delivery of tauroursodeoxycholic acid (TUDCA) encapsulated in poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres for the treatment of the retina in a rat model of retinitis pigmentosa. PLGA microspheres (MSs) containing TUDCA were produced by the O/W emulsion-solvent evaporation technique. Particle size and morphology were assessed by light scattering and scanning electronic microscopy, respectively. Homozygous P23H line 3 rats received a treatment of intravitreal injections of TUDCA-PLGA MSs. Retinal function was assessed by electroretinography at P30, P60, P90 and P120. The density, structure and synaptic contacts of retinal neurons were analyzed using immunofluorescence and confocal microscopy at P90 and P120. TUDCA-loaded PLGA MSs were spherical, with a smooth surface. The production yield was 78%, the MSs mean particle size was 23 µm and the drug loading resulted 12.5 ± 0.8 µg TUDCA/mg MSs. MSs were able to deliver the loaded active compound in a gradual and progressive manner over the 28-day in vitro release study. Scotopic electroretinografic responses showed increased ERG a- and b-wave amplitudes in TUDCA-PLGA-MSs-treated eyes as compared to those injected with unloaded PLGA particles. TUDCA-PLGA-MSs-treated eyes showed more photoreceptor rows than controls. The synaptic contacts of photoreceptors with bipolar and horizontal cells were also preserved in P23H rats treated with TUDCA-PLGA MSs. This work indicates that the slow and continuous delivery of TUDCA from PLGA-MSs has potential neuroprotective effects that could constitute a suitable therapy to prevent neurodegeneration and visual loss in retinitis pigmentosa.


Asunto(s)
Ceguera/tratamiento farmacológico , Preparaciones de Acción Retardada/administración & dosificación , Degeneración Retiniana/tratamiento farmacológico , Ácido Tauroquenodesoxicólico/administración & dosificación , Animales , Modelos Animales de Enfermedad , Electrorretinografía/métodos , Ácido Láctico/química , Microesferas , Fármacos Neuroprotectores/administración & dosificación , Tamaño de la Partícula , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Ratas Sprague-Dawley , Retina/efectos de los fármacos , Retinitis Pigmentosa/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...