Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 56: 102443, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36058112

RESUMEN

RAD51 is a critical recombinase that functions in concert with auxiliary mediator proteins to direct the homologous recombination (HR) DNA repair pathway. We show that Cys319 RAD51 possesses nucleophilic characteristics and is important for irradiation-induced RAD51 foci formation and resistance to inhibitors of poly (ADP-ribose) polymerase (PARP). We have previously identified that cysteine (Cys) oxidation of proteins can be important for activity and modulated via binding to peroxiredoxin 1 (PRDX1). PRDX1 reduces peroxides and coordinates the signaling actions of protein binding partners. Loss of PRDX1 inhibits irradiation-induced RAD51 foci formation and represses HR DNA repair. PRDX1-deficient human breast cancer cells and mouse embryonic fibroblasts display disrupted RAD51 foci formation and decreased HR, resulting in increased DNA damage and sensitization of cells to irradiation. Following irradiation cells deficient in PRDX1 had increased incorporation of the sulfenylation probe DAz-2 in RAD51 Cys319, a functionally-significant, thiol that PRDX1 is critical for maintaining in a reduced state. Molecular dynamics (MD) simulations of dT-DNA bound to a non-oxidized RAD51 protein showed tight binding throughout the simulation, while dT-DNA dissociated from an oxidized Cys319 RAD51 filament. These novel data establish RAD51 Cys319 as a functionally-significant site for the redox regulation of HR and cellular responses to IR.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Recombinasa Rad51 , Adenosina Difosfato/metabolismo , Animales , Cisteína/metabolismo , ADN/metabolismo , Reparación del ADN , Fibroblastos/metabolismo , Recombinación Homóloga , Humanos , Ratones , Oxidación-Reducción , Peróxidos , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Ribosa
2.
Sci Rep ; 9(1): 13792, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551460

RESUMEN

In biological tissues, radiation causes the formation of reactive oxygen species (ROS), some of which lead to sequential oxidation of certain protein cysteine residues. Resultant cysteinyl radicals are subject to post-translational modification through S-glutathionylation. The present clinical trial was designed to determine if S-glutathionylated serine protease inhibitors (serpins) in blood could be used as biomarkers of exposure to radiation. 56 male prostate cancer patients treated with radiotherapy were enrolled in the trial and levels of S-glutathionylated serpins A1 and A3 were assessed by immunoblotting. Patients were classified into three groups: (1) external beam radiation therapy (EBRT); (2) brachytherapy (BT); (3) both EBRT and BT. Prior to treatment, baseline plasma levels of both unmodified and S-glutathionylated serpins were similar in each group. We identified elevated plasma levels of S-glutathionylated serpin A1 monomer, trimer and serpin A3 monomer in patient blood following radiation. Maximal increased levels of these S-glutathionylated serpins were correlated with increased duration of radiotherapy treatments. We conclude that it is practical to quantify patient plasma S-glutathionylated serpins and that these post-translationally modified proteins are candidate biomarkers for measuring radiation exposure. This provides a platform for use of such biomarkers in trials with the range of drugs that, like radiation, produce ROS.


Asunto(s)
Biomarcadores/metabolismo , Neoplasias de la Próstata/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/metabolismo , Anciano , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Procesamiento Proteico-Postraduccional/fisiología , Exposición a la Radiación/efectos adversos , Especies Reactivas de Oxígeno/metabolismo
3.
Cancer Res ; 79(16): 4072-4085, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31227482

RESUMEN

ME-344 is a second-generation isoflavone with unusual cytotoxic properties that is in clinical testing in cancer. To identify targets that contribute to its anticancer activity and therapeutic index, we used lung cancer cell lines that are naturally sensitive or resistant to ME-344. Drug-induced apoptosis was linked with enhanced levels of reactive oxygen species and this initiated a nuclear erythroid factor 2-like 2 signaling response, downstream of which, heme oxygenase 1 (HO-1) was also found to be time-dependently inhibited by ME-344. ME-344 specifically bound to, and altered, HO-1 structure and increased HO-1 translocation from the rough endoplasmic reticulum to mitochondria, but only in drug-sensitive cells. These effects did not occur in either drug-resistant or primary lung fibroblasts with lower HO-1 basal levels. HO-1 was confirmed as a drug target by using surface plasmon resonance technology and through interaction with a clickable ME-344 compound (M2F) and subsequent proteomic analyses, showing direct binding of ME-344 with HO-1. Proteomic analysis showed that clusters of mitochondrial proteins, including voltage-dependent anion-selective channels, were also impacted by ME-344. Human lung cancer biopsies expressed higher levels of Nrf2 and HO-1 compared with normal tissues. Overall, our data show that ME-344 inhibits HO-1 and impacts its mitochondrial translocation. Other mitochondrial proteins are also affected, resulting in interference in tumor cell redox homeostasis and mitochondrial function. These factors contribute to a beneficial therapeutic index and support continued clinical development of ME-344. SIGNIFICANCE: A novel cytotoxic isoflavone is shown to inhibit heme oxygenase, a desirable yet elusive target that disrupts redox homeostasis causing cell death.


Asunto(s)
Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/metabolismo , Isoflavonas/farmacología , Neoplasias Pulmonares/metabolismo , Mitocondrias/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Isoflavonas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
4.
Leukemia ; 33(4): 1011-1022, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30315229

RESUMEN

Multiple Myeloma (MM) is highly sensitive to disruptions in cellular protein homeostasis. Proteasome inhibitors (PIs) are initially effective in the treatment of MM, although cures are not achievable and the emergence of resistance limits the durability of responses. New therapies are needed for refractory patients, and those that combat resistance to standard of care agents would be particularly valuable. Screening of multiple chemical libraries for PI re-sensitizing compounds identified E61 as a potent enhancer of multiple PIs and MM specific activity. Using a tandem approach of click chemistry and peptide mass fingerprinting, we identified multiple protein disulfide isomerase (PDI) family members as the primary molecular targets of E61. PDIs mediate oxidative protein folding, and E61 treatment induced robust ER and oxidative stress responses as well as the accumulation of ubiquitinylated proteins. A chemical optimization program led to a new structural class of indene (exemplified by lead E64FC26), which are highly potent pan-style inhibitors of PDIs. In mice with MM, E64FC26 improved survival and enhanced the activity of bortezomib without any adverse effects. This work demonstrates the potential of E64FC26 as an early drug candidate and the strategy of targeting multiple PDI isoforms for the treatment of refractory MM and beyond.


Asunto(s)
Antineoplásicos/farmacología , Indenos/farmacología , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Técnicas Químicas Combinatorias , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/enzimología , Mieloma Múltiple/patología , Células Tumorales Cultivadas
5.
J Biol Chem ; 293(12): 4366-4380, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29374060

RESUMEN

Glutathione S-transferase Pi (GSTP) is a thiolase that catalyzes the addition of glutathione (GSH) to receptive cysteines in target proteins, producing an S-glutathionylated residue. Accordingly, previous studies have reported that S-glutathionylation is constitutively decreased in cells from mice lacking GSTP (Gstp1/p2-/-). Here, we found that bone marrow-derived dendritic cells (BMDDCs) from Gstp1/p2-/- mice have proliferation rates that are greater than those in their WT counterparts (Gstp1/p2+/+). Moreover, Gstp1/p2-/- BMDDCs had increased reactive oxygen species (ROS) levels and decreased GSH:glutathione disulfide (GSSG) ratios. Estrogen receptor α (ERα) is linked to myeloproliferation and differentiation, and we observed that its steady-state levels are elevated in Gstp1/p2-/- BMDDCs, indicating a link between GSTP and ERα activities. BMDDCs differentiated by granulocyte-macrophage colony-stimulating factor had elevated ERα levels, which were more pronounced in Gstp1/p2-/- than WT mice. When stimulated with lipopolysaccharide for maturation, Gstp1/p2-/- BMDDCs exhibited augmented endocytosis, maturation rate, cytokine secretion, and T-cell activation; heightened glucose uptake and glycolysis; increased Akt signaling (in the mTOR pathway); and decreased AMPK-mediated phosphorylation of proteins. Of note, GSTP formed a complex with ERα, stimulating ERα S-glutathionylation at cysteines 221, 245, 417, and 447; altering ERα's binding affinity for estradiol; and reducing overall binding potential (receptor density and affinity) 3-fold. Moreover, in Gstp1/p2-/- BMDDCs, ERα S-glutathionylation was constitutively decreased. Taken together, these findings suggest that GSTP-mediated S-glutathionylation of ERα controls BMDDC differentiation and affects metabolic function in dendritic cells.


Asunto(s)
Células Dendríticas/fisiología , Receptor alfa de Estrógeno/metabolismo , Gutatión-S-Transferasa pi/fisiología , Glutatión/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Proliferación Celular , Células Dendríticas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
6.
Oncotarget ; 8(22): 35863-35876, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28415782

RESUMEN

Curative responses in the treatment of multiple myeloma (MM) are limited by the emergence of therapeutic resistance. To address this problem, we set out to identify druggable mechanisms that convey resistance to proteasome inhibitors (PIs; e.g., bortezomib), which are cornerstone agents in the treatment of MM. In isogenic pairs of PI sensitive and resistant cells, we observed stark differences in cellular bioenergetics between the divergent phenotypes. PI resistant cells exhibited increased mitochondrial respiration driven by glutamine as the principle fuel source. To target glutamine-induced respiration in PI resistant cells, we utilized the glutaminase-1 inhibitor, CB-839. CB-839 inhibited mitochondrial respiration and was more cytotoxic in PI resistant cells as a single agent. Furthermore, we found that CB-839 synergistically enhanced the activity of multiple PIs with the most dramatic synergy being observed with carfilzomib (Crflz), which was confirmed in a panel of genetically diverse PI sensitive and resistant MM cells. Mechanistically, CB-839 enhanced Crflz-induced ER stress and apoptosis, characterized by a robust induction of ATF4 and CHOP and the activation of caspases. Our findings suggest that the acquisition of PI resistance involves adaptations in cellular bioenergetics, supporting the combination of CB-839 with Crflz for the treatment of refractory MM.


Asunto(s)
Antineoplásicos/farmacología , Bencenoacetamidas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Glutaminasa/antagonistas & inhibidores , Oligopéptidos/farmacología , Inhibidores de Proteasoma/farmacología , Tiadiazoles/farmacología , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Biomarcadores , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología
7.
Antioxid Redox Signal ; 26(6): 247-261, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-26838680

RESUMEN

AIMS: S-glutathionylation of cysteine residues, catalyzed by glutathione S-transferase Pi (GSTP), alters structure/function characteristics of certain targeted proteins. Our goal is to characterize how S-glutathionylation of proteins within the endoplasmic reticulum (ER) impact cell sensitivity to ER-stress inducing drugs. RESULTS: We identify GSTP to be an ER-resident protein where it demonstrates both chaperone and catalytic functions. Redox based proteomic analyses identified a cluster of proteins cooperatively involved in the regulation of ER stress (immunoglobulin heavy chain-binding protein [BiP], protein disulfide isomerase [PDI], calnexin, calreticulin, endoplasmin, sarco/endoplasmic reticulum Ca2+-ATPase [SERCA]) that individually co-immunoprecipitated with GSTP (implying protein complex formation) and were subject to reactive oxygen species (ROS) induced S-glutathionylation. S-glutathionylation of each of these six proteins was attenuated in cells (liver, embryo fibroblasts or bone marrow dendritic) from mice lacking GSTP (Gstp1/p2-/-) compared to wild type (Gstp1/p2+/+). Moreover, Gstp1/p2-/- cells were significantly more sensitive to the cytotoxic effects of the ER-stress inducing drugs, thapsigargin (7-fold) and tunicamycin (2-fold). INNOVATION: Within the family of GST isozymes, GSTP has been ascribed the broadest range of catalytic and chaperone functions. Now, for the first time, we identify it as an ER resident protein that catalyzes S-glutathionylation of critical ER proteins within this organelle. Of note, this can provide a nexus for linkage of redox based signaling and pathways that regulate the unfolded protein response (UPR). This has novel importance in determining how some drugs kill cancer cells. CONCLUSIONS: Contextually, these results provide mechanistic evidence that GSTP can exert redox regulation in the oxidative ER environment and indicate that, within the ER, GSTP influences the cellular consequences of the UPR through S-glutathionylation of a series of key interrelated proteins. Antioxid. Redox Signal. 26, 247-261.


Asunto(s)
Descubrimiento de Drogas , Retículo Endoplásmico/metabolismo , Glutatión Transferasa/metabolismo , Proteína S/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Calcio/metabolismo , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Glutatión Transferasa/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada/genética
8.
J Pharmacol Exp Ther ; 358(2): 199-208, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27255112

RESUMEN

ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Isoflavonas/farmacología , Neoplasias Pulmonares/patología , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
9.
Biomed Pharmacother ; 68(7): 855-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25257100

RESUMEN

First-line therapy for pancreatic cancer is gemcitabine. Although tumors may initially respond to the gemcitabine treatment, soon tumor resistance develops leading to treatment failure. Previously, we demonstrated in human MIA PaCa-2 pancreatic cancer cells that N-acetyl-l-cysteine (NAC), a glutathione (GSH) precursor, prevents NFκB activation via S-glutathionylation of p65-NFκB, thereby blunting expression of survival genes. In this study, we documented the molecular sites of S-glutathionylation of p65, and we investigated whether NAC can suppress NFκB signaling and augment a therapeutic response to gemcitabine in vivo. Mass spectrometric analysis of S-glutathionylated p65-NFκB protein in vitro showed post-translational modifications of cysteines 38, 105, 120, 160 and 216 following oxidative and nitrosative stress. Circular dichroism revealed that S-glutathionylation of p65-NFκB did not change secondary structure of the protein, but increased tryptophan fluorescence revealed altered tertiary structure. Gemcitabine and NAC individually were not effective in decreasing MIA PaCa-2 tumor growth in vivo. However, combination treatment with NAC and gemcitabine decreased tumor growth by approximately 50%. NAC treatment also markedly enhanced tumor apoptosis in gemcitabine-treated mice. Compared to untreated tumors, gemcitabine treatment alone increased p65-NFκB nuclear translocation (3.7-fold) and DNA binding (2.5-fold), and these effects were blunted by NAC. In addition, NAC plus gemcitabine treatment decreased anti-apoptotic XIAP protein expression compared to gemcitabine alone. None of the treatments, however, affected extent of tumor hypoxia, as assessed by EF5 staining. Together, these results indicate that adjunct therapy with NAC prevents NFκB activation and improves gemcitabine chemotherapeutic efficacy.


Asunto(s)
Acetilcisteína/metabolismo , Desoxicitidina/análogos & derivados , FN-kappa B/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cisteína/metabolismo , Desoxicitidina/farmacología , Glutatión/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Estrés Oxidativo/efectos de los fármacos , Neoplasias Pancreáticas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Gemcitabina
10.
PLoS One ; 9(9): e107478, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25216273

RESUMEN

To interrogate why redox homeostasis and glutathione S-transferase P (GSTP) are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs) from both wild type (WT) and knockout (Gstp1/p2(-/-)) mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2(+)-ATPase) regulate Ca(2+) fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2(-/-) cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes different levels of myeloproliferation and migration [corrected]


Asunto(s)
Médula Ósea/enzimología , Movimiento Celular/genética , Glutatión Transferasa/metabolismo , Redes y Vías Metabólicas/genética , Animales , Proliferación Celular/genética , Quimiocina CXCL12/biosíntesis , Regulación de la Expresión Génica , Glutatión Transferasa/genética , Ratones , Ratones Noqueados , Oxidación-Reducción , Proteína Tirosina Fosfatasa no Receptora Tipo 11/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Receptores CXCR4/biosíntesis
11.
Adv Cancer Res ; 122: 143-75, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24974181

RESUMEN

Glutathione S-transferase P (GSTP) is one member of the GST superfamily that is prevalently expressed in mammals. Known to possess catalytic activity through deprotonating glutathione allowing formation of thioether bonds with electrophilic substrates, more recent discoveries have broadened our understanding of the biological roles of this protein. In addition to catalytic detoxification, other properties so far ascribed to GSTP include chaperone functions, regulation of nitric oxide pathways, regulation of a variety of kinase signaling pathways, and participation in the forward reaction of protein S-glutathionylation. The expression of GSTP has been linked with cancer and other human pathologies and more recently even with drug addiction. With respect to human health, polymorphic variants of GSTP may determine individual susceptibility to oxidative stress and/or be critical in the design and development of drugs that have used redox pathways as a discovery platform.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Gutatión-S-Transferasa pi/fisiología , Alelos , Animales , Glutatión/química , Homeostasis , Humanos , Ligandos , Ratones , Neoplasias/metabolismo , Óxido Nítrico/química , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
12.
J Biol Chem ; 288(37): 26497-504, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23861399

RESUMEN

Post-translational S-glutathionylation occurs through the reversible addition of a proximal donor of glutathione to thiolate anions of cysteines in target proteins, where the modification alters molecular mass, charge, and structure/function and/or prevents degradation from sulfhydryl overoxidation or proteolysis. Catalysis of both the forward (glutathione S-transferase P) and reverse (glutaredoxin) reactions creates a functional cycle that can also regulate certain protein functional clusters, including those involved in redox-dependent cell signaling events. For translational application, S-glutathionylated serum proteins may be useful as biomarkers in individuals (who may also have polymorphic expression of glutathione S-transferase P) exposed to agents that cause oxidative or nitrosative stress.


Asunto(s)
Cisteína/metabolismo , Regulación Enzimológica de la Expresión Génica , Glutatión/metabolismo , Animales , Glutarredoxinas/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Óxido Nítrico/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Peroxidasas/metabolismo , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Serpinas/metabolismo , Compuestos de Sulfhidrilo/metabolismo
13.
J Biol Chem ; 288(17): 11920-9, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23471966

RESUMEN

Respiratory substrates and adenine nucleotides cross the mitochondrial outer membrane through the voltage-dependent anion channel (VDAC), comprising three isoforms--VDAC1, 2, and 3. We characterized the role of individual isoforms in mitochondrial metabolism by HepG2 human hepatoma cells using siRNA. With VDAC3 to the greatest extent, all VDAC isoforms contributed to the maintenance of mitochondrial membrane potential, but only VDAC3 knockdown decreased ATP, ADP, NAD(P)H, and mitochondrial redox state. Cells expressing predominantly VDAC3 were least sensitive to depolarization induced by increased free tubulin. In planar lipid bilayers, free tubulin inhibited VDAC1 and VDAC2 but not VDAC3. Erastin, a compound that interacts with VDAC, blocked and reversed mitochondrial depolarization after microtubule destabilizers in intact cells and antagonized tubulin-induced VDAC blockage in planar bilayers. In conclusion, free tubulin inhibits VDAC1/2 and limits mitochondrial metabolism in HepG2 cells, contributing to the Warburg phenomenon. Reversal of tubulin-VDAC interaction by erastin antagonizes Warburg metabolism and restores oxidative mitochondrial metabolism.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismo , Piperazinas/farmacología , Tubulina (Proteína)/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Carcinoma Hepatocelular/genética , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Membrana Dobles de Lípidos/metabolismo , Neoplasias Hepáticas/genética , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , NADP/genética , NADP/metabolismo , Proteínas de Neoplasias/genética , Oxidación-Reducción , Canales Aniónicos Dependientes del Voltaje/genética
14.
Biochemistry ; 51(39): 7740-54, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22934964

RESUMEN

Sulfiredoxin (Srx) is a redox active protein that participates in the reduction of oxidized cysteine residues. Here we identify a novel function of Srx through its specific binding to S-glutathionylated S100A4 affecting its interaction with non-muscle myosin (NMIIA), thereby modulating the effect of S100A4 on NMIIA function and impacting cell adhesion and migration. Srx forms a complex with S100A4 (and has stronger affinity for S-glutathionylated S100A4), regulates its activity, and mediates redox regulation of the interaction of S100A4 with NMIIA. The consequence of this regulation is microfilament remodeling and altered cellular motility and adhesion. Srx-overexpressing cells had reduced levels of adhesion, decreased levels of Tyr(397)-phosphorylated focal adhesion kinase, and increased cell motility in wound healing assays. These results describe a novel redox-sensitive role for Srx in mediating complex protein interactions with plausible consequences for cancer cell motility.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas S100/metabolismo , Actinas/metabolismo , Actinas/ultraestructura , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Glutatión/metabolismo , Humanos , Inmunohistoquímica , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Mapeo de Interacción de Proteínas , Proteína de Unión al Calcio S100A4
15.
Int J Cell Biol ; 2012: 273549, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654912

RESUMEN

S-Glutathionylation of cysteine residues within target proteins is a posttranslational modification that alters structure and function. We have shown that S-glutathionylation of protein disulfide isomerase (PDI) disrupts protein folding and leads to the activation of the unfolded protein response (UPR). PDI is a molecular chaperone for estrogen receptor alpha (ERα). Our present data show in breast cancer cells that S-glutathionylation of PDI interferes with its chaperone activity and abolishes its capacity to form a complex with ERα. Such drug treatment also reverses estradiol-induced upregulation of c-Myc, cyclinD1, and P21(Cip), gene products involved in cell proliferation. Expression of an S-glutathionylation refractory PDI mutant diminishes the toxic effects of PABA/NO. Thus, redox regulation of PDI causes its S-glutathionylation, thereby mediating cell death through activation of the UPR and abrogation of ERα stability and signaling.

16.
Cancer Res ; 72(9): 2383-93, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22406622

RESUMEN

Many cancer drugs impact cancer cell redox regulatory mechanisms and disrupt redox homeostasis. Pharmacodynamic biomarkers that measure therapeutic efficacy or toxicity could improve patient management. Using immunoblot analyses and mass spectrometry, we identified that serpins A1 and A3 were S-glutathionylated in a dose- and time-dependent manner following treatment of mice with drugs that alter reactive oxygen or nitrogen species. Tandem mass spectrometry analyses identified Cys(256) of serpin A1 and Cys(263) of serpin A3 as the S-glutathionylated residues. In human plasma from cancer patients, there were higher levels of unmodified serpin A1 and A3, but following treatments with redox active drugs, relative S-glutathionylation of these serpins was higher in plasma from normal individuals. There is potential for S-glutathionylated serpins A1 and A3 to act as pharmacodynamic biomarkers for evaluation of patient response to drugs that target redox pathways.


Asunto(s)
Biomarcadores de Tumor/sangre , Glutatión/análogos & derivados , Neoplasias/sangre , Neoplasias/tratamiento farmacológico , alfa 1-Antiquimotripsina/sangre , alfa 1-Antitripsina/sangre , Animales , Cisplatino/farmacología , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Glutatión/sangre , Disulfuro de Glutatión/farmacología , Humanos , Inmunoprecipitación , Ratones , Oxidación-Reducción/efectos de los fármacos , Serpinas/sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
17.
J Biol Chem ; 286(49): 42446-42458, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22013072

RESUMEN

Mechanisms that regulate endoplasmic reticulum (ER) stress-induced apoptosis in cancer cells remain enigmatic. Recent data suggest that ceramide synthase1-6 (CerS1-6)-generated ceramides, containing different fatty acid chain lengths, might exhibit distinct and opposing functions, such as apoptosis versus survival in a context-dependent manner. Here, we investigated the mechanisms involved in the activation of one of the major ER stress response proteins, ATF-6, and subsequent apoptosis by alterations of CerS6/C(16)-ceramide. Induction of wild type (WT), but not the catalytically inactive mutant CerS6, increased tumor growth in SCID mice, whereas siRNA-mediated knockdown of CerS6 induced ATF-6 activation and apoptosis in multiple human cancer cells. Down-regulation of CerS6/C(16)-ceramide, and not its further metabolism to glucosylceramide or sphingomyelin, activated ATF-6 upon treatment with ER stress inducers tunicamycin or SAHA (suberoylanilide hydroxamic acid). Induction of WT-CerS6 expression, but not its mutant, or ectopic expression of the dominant-negative mutant form of ATF-6 protected cells from apoptosis in response to CerS6 knockdown and tunicamycin or SAHA treatment. Mechanistically, ATF-6 activation was regulated by a concerted two-step process involving the release of Ca(2+) from the ER stores ([Ca(2+)](ER)), which resulted in the fragmentation of Golgi membranes in response to CerS6/C(16)-ceramide alteration. This resulted in the accumulation of pro-ATF-6 in the disrupted ER/Golgi membrane network, where pro-ATF6 is activated. Accordingly, ectopic expression of a Ca(2+) chelator calbindin prevented the Golgi fragmentation, ATF-6 activation, and apoptosis in response to CerS6/C(16)-ceramide down-regulation. Overall, these data suggest a novel mechanism of how CerS6/C(16)-ceramide alteration activates ATF6 and induces ER-stress-mediated apoptosis in squamous cell carcinomas.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Proteínas de la Membrana/metabolismo , Oxidorreductasas/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Animales , Apoptosis , Calcio/metabolismo , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias , Esfingolípidos/metabolismo
18.
Neuropsychopharmacology ; 36(12): 2551-60, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21796101

RESUMEN

Impaired glutamate homeostasis in the nucleus accumbens has been linked to cocaine relapse in animal models, and results in part from cocaine-induced downregulation of the cystine-glutamate exchanger. In addition to regulating extracellular glutamate, the uptake of cystine by the exchanger is a rate-limiting step in the synthesis of glutathione (GSH). GSH is critical for balancing cellular redox in response to oxidative stress. Cocaine administration induces oxidative stress, and we first determined if downregulated cystine-glutamate exchange alters redox homeostasis in rats withdrawn from daily cocaine injections and then challenged with acute cocaine. Among the daily cocaine-induced changes in redox homeostasis were an increase in protein S-glutathionylation and a decrease in expression of GSH-S-transferase pi (GSTpi). To mimic reduced GSTpi, a genetic mouse model of GSTpi deletion or pharmacological inhibition of GSTpi by administering ketoprofen during daily cocaine administration was used. The capacity of cocaine to induce conditioned place preference or locomotor sensitization was augmented, indicating that reducing GSTpi may contribute to cocaine-induced behavioral neuroplasticity. Conversely, an acute cocaine challenge after withdrawal from daily cocaine elicited a marked increase in accumbens GSTpi, and the expression of behavioral sensitization to a cocaine challenge injection was inhibited by ketoprofen pretreatment; supporting a protective effect by the acute cocaine-induced rise in GSTpi. Together, these data indicate that cocaine-induced oxidative stress induces changes in GSTpi that contribute to cocaine-induced behavioral plasticity.


Asunto(s)
Cocaína/administración & dosificación , Actividad Motora/fisiología , Plasticidad Neuronal/fisiología , Estrés Oxidativo/fisiología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/fisiología , Animales , Gutatión-S-Transferasa pi/metabolismo , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas
19.
Free Radic Biol Med ; 51(2): 299-313, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21558000

RESUMEN

Glutathione S-transferase P is abundantly expressed in some mammalian tissues, particularly those associated with malignancies. While the enzyme can catalyze thioether bond formation between some electrophilic chemicals and GSH, novel nondetoxification functions are now ascribed to it. This review summarizes recent material that implicates GSTP in mediating S-glutathionylation of specific clusters of target proteins and in reactions that define a negative regulatory role in some kinase pathways through ligand or protein:protein interactions. It is becoming apparent that GSTP participates in the maintenance of cellular redox homeostasis through a number of convergent and divergent mechanisms. Moreover, drug platforms that have GSTP as a target have produced some interesting preclinical and clinical candidates.


Asunto(s)
Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Humanos , Ligandos , Neoplasias/enzimología
20.
Invest New Drugs ; 29(5): 719-29, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20232108

RESUMEN

PABA/NO is a diazeniumdiolate selectively activated by glutathione S-transferase P (GSTP) to release nitric oxide (NO) and is a potent inducer of protein S-glutathionylation, a redox-sensitive post-translational modification of cysteine residues. Using a procedure that incrementally increased exposure of cells to PABA/NO, an acquired drug resistant human promyelocytic leukemia HL60 cell line (HL60(PABA)) that exhibited 1.9-fold resistance to the drug (IC(50) 15 µM vs ~8 µM for wild-type) was created. HL60(PABA) cells had a decreased growth rate attributable to altered cellular differentiation, as measured by increased expression of CD11b; decreased expression of CD14; decreased nuclear to cytoplasmic ratios and a condensation of nuclear chromatin. This was accompanied by alterations in both plasma and mitochondrial membrane potentials. Both GSTP expression and nitric oxide release were reduced two-fold, while increased expression levels of genes involved in the unfolded protein response (UPR) were evident in HL60(PABA) cells. Wild type cells treated with PABA/NO had increased levels of protein S-glutathionylation and JNK activation, while JNK was constitutively active in HL60(PABA) cells and these cells had reduced levels of S-glutathionylation. By removing PABA/NO from the growth medium, HL60(PABA) cells reverted to sensitivity within 21 days suggesting that resistance was not genetically stable. Mechanistically, PABA/NO resistance is mediated through reduced levels of GSTP resulting in reduced NO release and its subsequent alterations in cellular response to nitrosative stress.


Asunto(s)
Compuestos Azo/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Glutatión Transferasa/metabolismo , Óxido Nítrico/metabolismo , Profármacos/farmacología , para-Aminobenzoatos , Ácido 4-Aminobenzoico/química , Ácido 4-Aminobenzoico/farmacología , Compuestos Azo/química , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glutatión/metabolismo , Células HL-60 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Profármacos/química , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA