Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 15(5): 1709-1721, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784465

RESUMEN

A series of Meldrum's acid, 7-azaindole and 1,2,3-triazole hybrids were synthesized and evaluated for their in vitro anticancer activity against five different cancer cell lines viz. MCF-7 (breast cancer), HeLa (cervical cancer), DU-145 (prostate cancer), HepG2 (liver cancer) and K562 (myelogenous leukemia cell). Among the series, compound 6b containing a 4-methyl substitution showed potent activity against HeLa cell line. Cell cycle analysis revealed that compound 6b induced cell cycle arrest at the G2/M phase and induced apoptosis. Apoptotic activity was further confirmed by Hoechst staining and Annexin V-FITC assay. Compound 6b has been found to exhibit higher activity in all four cell lines, with IC50 values of 6.67 ± 0.39 µM, 4.44 ± 0.32 µM, 12.38 ± 0.51 µM and 9.97 ± 0.25 µM against MCF-7, HeLa, DU-145 and HepG2 cell lines respectively. Compounds 6m (9.68 ± 0.10 µM) and 6n (9.52 ± 0.38 µM), which have dimethoxy and trimethoxy substitutions, respectively, have demonstrated significant anticancer activity against HeLa cells compared to the other cells. The molecular docking study of ligand 6b against the crystal structure of EGFR and Mcl-1 scored notable binding energy values and displayed important interactions like H-bond, π-cation and other hydrophobic interactions.

2.
Mol Divers ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796797

RESUMEN

Akt1 (protein kinase B) has become a major focus of attention due to its significant functionality in a variety of cellular processes and the inhibition of Akt1 could lead to a decrease in tumour growth effectively in cancer cells. In the present work, we discovered a set of novel Akt1 inhibitors by using multiple computational techniques, i.e. pharmacophore-based virtual screening, molecular docking, binding free energy calculations, and ADME properties. A five-point pharmacophore hypothesis was implemented and validated with AADRR38. The obtained R2 and Q2 values are in the acceptable region with the values of 0.90 and 0.64, respectively. The generated pharmacophore model was employed for virtual screening to find out the potential Akt1 inhibitors. Further, the selected hits were subjected to molecular docking, binding free energy analysis, and refined using ADME properties. Also, we designed a series of 6-methoxybenzo[b]oxazole analogues by comprising the structural characteristics of the hits acquired from the database. Molecules D1-D10 were found to have strong binding interactions and higher binding free energy values. In addition, Molecular dynamic simulation was performed to understand the conformational changes of protein-ligand complex.

3.
Bioorg Med Chem ; 98: 117562, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38184947

RESUMEN

In this report, a library consisting of three sets of indole-piperazine derivatives was designed through the molecular hybridization approach. In total, fifty new hybrid compounds (T1-T50) were synthesized and screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain (ATCC-27294). Five (T36, T43, T44, T48 and T49) among fifty compounds exhibited significant inhibitory potency with the MIC of 1.6 µg/mL, which is twofold more potent than the standard first-line TB drug Pyrazinamide and equipotent with Isoniazid. N-1,2,3-triazolyl indole-piperazine derivatives displayed improved inhibition activity as compared to the simple and N-benzyl indole-piperazine derivatives. In addition, the observed activity profile of indole-piperazines was similar to standard anti-TB drugs (isoniazid and pyrazinamide) against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains, demonstrating the compounds' selectivity towards the Mycobacterium tuberculosis H37Rv strain. All the active anti-TB compounds are proved to be non-toxic (with IC50 > 300 µg/mL) as verified through the toxicity evaluation against VERO cell lines. Additionally, molecular docking studies against two target enzymes (Inh A and CYP121) were performed to validate the activity profile of indole-piperazine derivatives. Further, in silico-ADME prediction and pharmacokinetic parameters indicated that these compounds have good oral bioavailability.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Simulación del Acoplamiento Molecular , Isoniazida/farmacología , Pirazinamida , Piperazinas/farmacología , Triazoles/farmacología , Triazoles/metabolismo , Piperazina , Relación Estructura-Actividad , Mycobacterium tuberculosis/metabolismo , Indoles/farmacología , Pruebas de Sensibilidad Microbiana
4.
Indian J Tuberc ; 70(4): 451-459, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37968051

RESUMEN

BACKGROUND: Tuberculosis still looms large on the global epidemiological radar and warrants continuous effort in the direction of developing new anti TB drugs to battle evolving resistance mechanisms of the causative agent Mycobacterium tuberculosis. METHODS: In the present paper, synthesis of n has been attempted. All the synthesized compounds were characterized by 1H-NMR, 13C-NMR, IR and Mass spectroscopy. Anti TB profile of the synthesized compounds were tested by MABA assay employing M.tb H37Rv strain. RESULTS: Two compounds namely N-(2-acetoxy)-N-methyl-4-(4,5-diphenyl-1H-imidazole-2-yl) benzenamine and 2-(N-(4-(4,5-bis(4-methoxyphenyl)-1H-imidazole-2-yl)phenyl)-N-methylamino) ethanol exhibited impressive anti TB inhibitory potential with an MIC of 3.125 µg/mL. To visualize the binding interactions of the active compounds molecular docking studies were carried out on putative target M. tuberculosis Glutamine synthetase (MtGS) in complex with a trisubstituted imidazole. To ascertain their drug likeliness and safety profile in silico ADME/T prediction was performed on all the synthesized compounds. CONCLUSION: Three compounds 1a, 2g and 2c exhibited good inhibitory potency against M.tb H37Rv and all the synthesized compounds also show promising antifungal activity.


Asunto(s)
Mycobacterium tuberculosis , Nitroimidazoles , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/química , Antifúngicos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Tuberculosis/microbiología , Imidazoles/farmacología , Imidazoles/química , Nitroimidazoles/farmacología
5.
ACS Omega ; 8(41): 37781-37797, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867649

RESUMEN

Multidrug-resistant fungal infections have become much more common in recent years, especially in immune-compromised patients. Therefore, researchers and pharmaceutical professionals have focused on the development of novel antifungal agents that can tackle the problem of resistance. In continuation to this, a novel series of pyrazole-bearing pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione derivatives (4a-4o) have been developed. These compounds have been screened against Candida albicans, Aspergillus niger, and Aspergillus clavatus. The synthesized compounds were characterized by well-known spectroscopic techniques, i.e., IR, 1H NMR, 13C NMR, and mass spectrometry. In vitro antifungal results revealed that compound 4n showed activity against C. albicans having MIC value of 200 µg/mL. To know the plausible mode of action, the active derivatives were screened for anti-biofilm and ergosterol biosynthesis inhibition activities. The compounds 4h, 4j, 4k, and 4n showed greater ergosterol biosynthesis inhibition than the control DMSO. To comprehend how molecules interact with the receptor, studies of molecular docking of 4k and 4n have been performed on the homology-modeled protein of ß-tubulin. The molecular docking revealed that the active compounds 4h, 4j, 4k, 4l, and 4n interacting with the active site amino acid of sterol 14-alpha demethylase (PDB ID: 5v5z) indicate one of the possible modes of action of ergosterol inhibition activity. The synthesized compounds 4c, 4e, 4h, 4i, 4j, 4k, 4l, and 4n inhibited biofilm formation and possessed the potential for anti-biofilm activity. DFT-based quantum mechanical calculations were carried out to optimize, predict, and compare the vibration modes of the molecule 4a.

6.
Mol Divers ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37326778

RESUMEN

A series of novel aryl benzylidenethiazolidine-2,4-dione based 1,2,3-triazoles synthesized in a straightforward route consisting of benzylidenethiazolidine-2,4-dione and 1,2,3-triazole pharmacophores. The new scaffolds tested for in vitro antidiabetic activity by inhibition of aldose reductase enzyme and its inhibition measured in half of Inhibition Concentration (IC50). The activity results correlated with standard reference Sorbinil (IC50: 3.45 ± 0.25 µM). Among all the titled compounds 8f (1.42 ± 0.21 µM), 8d (1.85 ± 0.39 µM), 13a (1.94 ± 0.27 µM) and 8b (1.98 ± 0.58 µM) shown potent activity. In addition, molecular docking results against the crystal structure of aldose reductase (PDB ID: 1PWM) revealed that the binding affinities shown by all synthesized compounds are higher than the reference compound Sorbinil. The docking scores, H-bond interactions, and hydrophobic interactions well defined inhibition strength of all compounds.

7.
Bioorg Med Chem Lett ; 80: 129103, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36494051

RESUMEN

Glioma is aggressive malignant tumor with limited therapeutic interventions. Herein we report the synthesis of fused bicyclic 1,2,4-triazolothiazoles by a one-pot multi-component approach and their activity against C6 rat and LN18 human glioma cell lines. The target compounds 2-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl) isoindoline-1,3-diones and (E)-1-phenyl-N-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl) methanimines were obtained by the reaction of 5-amino-4H-1,2,4-triazole-3-thiol with substituted phenacyl bromide, phthalic anhydride, and different aromatic aldehydes in EtOH/HCl under reflux conditions. In C6 rat glioma cell lines, compounds 4g and 6i showed good cytotoxic activity with IC50 values of 8.09 and 8.74 µM, respectively, resulting in G1 and G2-M phase arrest of the cell cycle and activation of apoptosis by modulating phosphorylation of ERK and AKT pathway.


Asunto(s)
Antineoplásicos , Glioma , Animales , Humanos , Ratas , Antineoplásicos/farmacología , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Glioma/tratamiento farmacológico , Glioma/patología
8.
J Recept Signal Transduct Res ; 42(5): 439-453, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34844526

RESUMEN

B-Raf is one among the most frequently mutating proto-oncogene which is associated with the serine/threonine Raf kinase family involved in the RAS-RAF-MEK-ERK pathway, which is the most deregulated pathway in human cancers. Mutant B-Raf V600E got an excellent scope for investigation in cancer as a potential therapeutic target. Formerly B-RafV600E is considered the molecular target for numerous antitumor compounds like purinyl pyridine and pyrimidine derivatives. In the current research work using molecular docking approach of Schrodinger Glide 5.6 version, ligand docking, pharmacophore-based virtual screening, binding free energy calculations of a series of 2-amino purinyl pyridine and pyrimidine derivatives were modeled, their docking values were predicted, that were considered to be potent against B-Raf V600E. A five-point hypothesis accompanied by a hydrogen bond acceptor(A), two hydrogen bond donors(D), and two aromatic rings (R) was built with a justifiable R2 value of 0.91 and a Q2 value of 0.64. Then by using Asinex Elite Synergy database, virtual screening was performed, and identified several potential hits. Subsequently, the molecules which had interactions with the target B-Raf kinase were determined by subjecting the obtained hits for SP and XP docking processes. Finally, for the top leads obtained, binding free energies were accomplished. About 16 new purinyl pyridine molecules were also designed. Almost nine molecules manifested crucial ligand interactions and binding free energies. At the outset, this research paved the way for us in spotting new molecules with B-Raf inhibitory activity, which can further be explored to design molecules with enhanced pharmacokinetic profiles.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Piridinas , Pirimidinas , Serina , Treonina
9.
Bioorg Chem ; 115: 105173, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34329996

RESUMEN

In order to develop the antimicrobial and antitubercular agents, we have derived quinoline bearing dihydropyrimidine analogues 5a-o and structures of these compounds were determined by spectroscopic techniques. Further, we have calculated the molecular properties prediction and drug-likeness by Molinspiration property calculation toolkit and MolSoft software, respectively. The most active compound against Mycobacterium tuberculosis (5m, MIC = 0.20 µg/mL) also possessed a maximum drug-likeness model score (0.42). Compounds 5m, 5g and 5k were possessed promising antibacterial activity against tested bacterial species. Compound 5k was the only compound to have eye-catcher antifungal activity. Furthermore, the MTT cytotoxicity results on HeLa cells suggested lower cytotoxicity of biologically active compounds. Supramolecular interactions of the synthesized compounds has been assessed my means of molecular docking studies. Although all the synthesized compounds are showing preferably good interactions with their respective proteins, their binding free energies values suggest that these molecules are preferred for antitubercular activity rather than antimicrobial activity.


Asunto(s)
Antiinfecciosos/síntesis química , Antituberculosos/síntesis química , Quinolinas/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Antituberculosos/metabolismo , Antituberculosos/farmacología , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Girasa de ADN/química , Girasa de ADN/metabolismo , Diseño de Fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Células HeLa , Humanos , Enlace de Hidrógeno , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Quinidina/análogos & derivados , Quinidina/química , Quinolinas/metabolismo , Quinolinas/farmacología , Relación Estructura-Actividad
10.
J Recept Signal Transduct Res ; 40(1): 1-14, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31931654

RESUMEN

Pim-1 is one of the isoforms of pim proteins comprising pim-1, pim-2 and pim-3. It was basically recognized as proviral integration moloney murine leukemia virus which is associated with T-cell lymphomogenesis. Pim-1 is known to play a crucial role in cell cycle progression and acts as downstream target for the JAK/STAT signaling pathway. Recently it has emerged as a hopeful therapeutic target for cancer treatment as deregulation or over expression of pim causes hematologic cancers. In present article molecular docking based three dimensional quantitative structure and activity relationship and molecular dynamics simulation studies have been carried out on indole derivatives reported as pim-1 inhibitors. Initially docking was carried out to obtain the receptor specific orientation of the molecules and later to understand the structural requirements of pim-1 inhibitors robust 3 D QSAR models were built using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods. The reliability of the models was established from conventional (r2) and cross validated (q2) values of 0.982, 0.524 for CoMFA and 0.974, 0.586 for CoMSIA respectively. Further the predictive ability of the model was evaluated using a test set of 17 molecules. The docking studies revealed that interaction with Glu 121 is vital for binding of inhibitors to pim-1. Based on the outcome of the results new molecules with improved activity were designed. Furthermore, MD simulations were also performed to examine the stability of interactions and investigate the pivotal role of Glu 121.


Asunto(s)
Diseño de Fármacos , Indoles/química , Indoles/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Ligandos , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Relación Estructura-Actividad Cuantitativa , Electricidad Estática
11.
J Comput Aided Mol Des ; 34(1): 39-54, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31792886

RESUMEN

Attachment of envelope glycoprotein gp120 to the host cell receptor CD4 is the first step during the human immunodeficiency virus-1 (HIV-1) entry into the host cells that makes it a promising target for drug design. To elucidate the crucial three dimensional (3D) structural features of reported HIV-1 gp120 CD4 binding inhibitors, 3D pharmacophores were generated and receptor based approach was employed to quantify these structural features. A four-partial least square factor model with good statistics and predictive ability was generated for the dataset of 100 molecules. To further ascertain the structural requirement for gp120-CD4 binding inhibition, molecular interaction studies of inhibitors with gp120 was carried out by performing molecular docking using Glide 5.6. Based on these studies, structural requirements were drawn and new molecules were designed accordingly to yield new sulphonamides derivatives. A water based green synthetic approach was adopted to obtain these compounds which were evaluated for their HIV-1 gp120 CD4 binding inhibition. The newly synthesized compounds exhibited remarkable activity (10-fold increase) when compared with the standard BMS 806. Further the stability of newly synthesized derivatives with HIV-1 gp120 was also investigated through molecular dynamics simulation studies. This provides a proof of concept for molecular modeling based design of new inhibitors for inhibition of HIV-1 gp120 CD4 interaction.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Sulfonamidas/química , Sulfonamidas/farmacología , Diseño de Fármacos , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/metabolismo , Humanos , Simulación del Acoplamiento Molecular
12.
Comput Biol Chem ; 78: 81-94, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30500556

RESUMEN

The fight against tuberculosis (TB) is a time immemorial one and the emergence of new drug resistant strains of Mycobacterium tuberculosis keeps throwing new challenges to the scientific community immersed in finding mechanisms to control this dreaded disease. Computer aided drug designing (CADD) is one of the several approaches that can assist in identifying the potent actives against Mycobacterium. In this work, a series of 109 known Mycobacterial membrane proteins large 3 (MmpL3) inhibitors were pooled and atom based 3D QSAR analysis was performed to understand the structural features essential for inhibitory activity against the MmpL3, known to be a key player in transporting substances critical for cell wall integrity of Mycobacterium. The data set employed was randomly split into training set and test set molecules. The training set of 74 molecules was used to derive CoMFA and CoMSIA models that were statistically reliable (CoMFA: q2loo = 0.53; r2ncv = 0.93 and CoMSIA: q2loo = 0.60; r2ncv = 0.93). The derived models also exhibited good external predictive ability (CoMFA: r2pred = 0.78 and CoMSIA: r2pred = 0.79). The results are quite encouraging and information derived from these analyses was applied to design new molecules. The designed molecule showed appreciable predicted activity values and reasonably good ADMET profile. The strategy used in designing new molecules can be pursued in the hunt for new chemical entities targeting MmpL3, expanding the existing arsenal against TB.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Diseño Asistido por Computadora , Mycobacterium tuberculosis/efectos de los fármacos , Pirroles/farmacología , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Pirroles/química
13.
Mol Divers ; 22(4): 943-956, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29968120

RESUMEN

As a part of our endeavor toward the synthesis of a new class of biologically potent heterocyclic hybrids, a series of newly fused thiazolo[2,3-b]pyrimidinones bearing a pyrazolylcoumarin moiety (6a-p) were synthesized in acceptable yields. Anticipated structures of all titled compounds were in agreement with spectral and analytical (C, H and N) analyses. The compounds were screened for in vitro antibacterial activity against both G+ and G- bacterial strains and antiproliferative activity against K562 (chronic myelogenous leukemia), MCF-7 (breast cancer), MDA-MB-231 (breast cancer), COLO 205 (colorectal adenocarcinoma), HepG2 (hepatocellular carcinoma) cell lines. Further, potent antibacterial compounds were subjected to molecular docking studies in order to gain insight into their plausible binding modes and mechanism of action against MurB. The modeling results were in agreement with the experimental data.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Pirimidinonas/síntesis química , Pirimidinonas/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Proteica , Pirimidinonas/química , Pirimidinonas/metabolismo , Relación Estructura-Actividad
14.
Comput Biol Chem ; 73: 95-104, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29475176

RESUMEN

Staphylococcus aureus is a gram positive bacterium. It is the leading cause of skin and respiratory infections, osteomyelitis, Ritter's disease, endocarditis, and bacteraemia in the developed world. We employed combined studies of 3D QSAR, molecular docking which are validated by molecular dynamics simulations and in silico ADME prediction have been performed on Isothiazoloquinolones inhibitors against methicillin resistance Staphylococcus aureus. Three-dimensional quantitative structure-activity relationship (3D-QSAR) study was applied using comparative molecular field analysis (CoMFA) with Q2 of 0.578, R2 of 0.988, and comparative molecular similarity indices analysis (CoMSIA) with Q2 of 0.554, R2 of 0.975. The predictive ability of these model was determined using a test set of molecules that gave acceptable predictive correlation (r2 Pred) values 0.55 and 0.57 of CoMFA and CoMSIA respectively. Docking, simulations were employed to position the inhibitors into protein active site to find out the most probable binding mode and most reliable conformations. Developed models and Docking methods provide guidance to design molecules with enhanced activity.


Asunto(s)
Antibacterianos/farmacología , Diseño de Fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Quinolonas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Quinolonas/síntesis química , Quinolonas/química
15.
Chem Cent J ; 12(1): 1, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29318401

RESUMEN

BACKGROUND: There is a dire need for the discovery and development of new antimicrobial agents after several experiments for a better resistance of microorganisms towards antimicrobial agents become a serious health problem for a few years in the past. As benzimidazole possess various types of biological activities, it has been synthesized, in the present study, a new series of (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl)benzofuran-2-yl)(phenyl)methanone analogs by using the condensation and screened for its in vitro antimicrobial activity and cytotoxicity. RESULTS: The synthesized (5-(3-(1H-benzo[d]imidazol-2-yl)-4-hydroxybenzyl) benzofuran-2-yl)(phenyl)methanone analogs were confirmed by IR, 1H and 13C-NMR, MS spectra and HRMS spectral data. The synthesized compounds were evaluated for their in vitro antimicrobial potential against Gram-positive (Bacillus subtilis, Bacillus megaterium, Staph aureus and Streptococcus pyogenes), Gram-negative (Escherichia coli, Proteus vulgaris, Proteus mirabilis and Enterobacter aerogenes) bacterial and fungal (Aspergillus niger, Candida albicans, Fusarium oxysporum, Fusarium solani) strains by disc diffusion method and the minimum inhibitory concentration (MIC) in which it has been recorded in microgram per milliliter in comparison to the reference drugs, ciprofloxacin (antibacterial) and nystatin (antifungal). Further, the cytotoxicity (IC50 value) has also been assessed on human cervical (HeLa), Supt1 cancer cell lines by using MTT assay. CONCLUSIONS: The following screened compounds (4d), (4f), (4g), (4k), (4l), (4o) and (4u) were found to be the best active against all the tested bacterial and fungal strains among all the demonstrated compounds of biological study. The MIC determination was also carried out against bacteria and fungi, the compounds (4f) and (4u) are found to be exhibited excellent potent against bacteria and fungi respectively. The compounds (4f) and (4u) were shown non-toxic in nature after screened for cytotoxicity against the cancer cell lines of human cervical (HeLa) and Supt1. Additionally, structure and antibacterial activity relationship were also further supported by in silico molecular docking studies of the active compounds against DNA topoisomerase.

16.
J Recept Signal Transduct Res ; 38(1): 61-70, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29369011

RESUMEN

Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r2ncv and r2loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r2Pred) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Citoesqueleto/química , Diseño de Fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas del Citoesqueleto/antagonistas & inhibidores , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
17.
J Thorac Oncol ; 13(5): 721-726, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29369805

RESUMEN

INTRODUCTION: A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. METHODS: A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. RESULTS: The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. CONCLUSIONS: The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Resistencia a Antineoplásicos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/enzimología , Modelos Moleculares
18.
J Recept Signal Transduct Res ; 38(5-6): 462-474, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31038024

RESUMEN

A therapeutic rationale is proposed by selectively targeting tyrosine kinase 2 (TYK 2) to obtain potent TYK 2 inhibitors by molecular modeling studies. In the present study, we have taken tyrosine kinase (TYK 2) inhibitors and carried out molecular docking, 3 D quantitative structure-activity relationship (3D-QSAR) analysis and molecular dynamics (MD). Based on the 3D-QSAR results thirteen new compounds (R-1 to R-13) were designed and synthesized in good yields. The synthesized molecules were evaluated for their in vitro anticancer activity against LnCap and A549 cell lines. The molecules R-1, R-3, R-5, R-7, and R-10 exhibited considerable anti cancer activity.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , TYK2 Quinasa/química , Células A549 , Sitios de Unión , Humanos , Neoplasias Pulmonares/patología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad Cuantitativa , TYK2 Quinasa/antagonistas & inhibidores , TYK2 Quinasa/farmacología
19.
J Biomol Struct Dyn ; 36(2): 486-503, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28081678

RESUMEN

The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔGbind and experimental pIC50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.


Asunto(s)
Framicetina/química , Infecciones por VIH/genética , Duplicado del Terminal Largo de VIH/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Entropía , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , VIH-1/patogenicidad , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , ARN/química , ARN/genética , Termodinámica , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
20.
Mol Divers ; 21(4): 999-1010, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28840414

RESUMEN

On the basis of reported antimycobacterial property of chroman-4-one pharmacophore, a series of chemically modified bis-spirochromanones were synthesized starting from 2-hydroxyacetophenone and 1,4-dioxaspiro[4.5] decan-8-one using a Kabbe condensation approach. The synthesized bis-spirochromanones were established based on their spectral data and X-ray crystal structure of 6e. All synthesized compounds were evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain, finding that some products exhibited good antimycobacterial activity with minimum inhibitory concentration as low as [Formula: see text]. Docking studies were carried out to identify the binding interactions of compounds II, 6a and 6n with FtsZ. Compounds exhibiting good in vitro potency in the MTB MIC assay were further evaluated for toxicity using the HEK cell line.


Asunto(s)
Antituberculosos/síntesis química , Antituberculosos/farmacología , Cromanos/síntesis química , Cromanos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Compuestos de Espiro/química , Antituberculosos/metabolismo , Antituberculosos/toxicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Técnicas de Química Sintética , Cromanos/metabolismo , Cromanos/toxicidad , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/metabolismo , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...