Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3000, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589403

RESUMEN

Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.


Asunto(s)
Actomiosina , Proteínas de Drosophila , Animales , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo , Epitelio/metabolismo , Morfogénesis
3.
Nature ; 623(7985): 183-192, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37853125

RESUMEN

The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated1,2, the contribution of chromosome folding to these processes remains unclear3. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1. This compartment forms by a mechanism that is consistent with polymer-polymer phase separation rather than liquid-liquid phase separation. The D compartment arises mostly in G1 phase, is independent of cohesin and is enhanced after pharmacological inhibition of DNA-dependent protein kinase (DNA-PK) or R-loop accumulation. Importantly, R-loop-enriched DNA-damage-responsive genes physically localize to the D compartment, and this contributes to their optimal activation, providing a function for DSB clustering in the DNA damage response. However, DSB-induced chromosome reorganization comes at the expense of an increased rate of translocations, also observed in cancer genomes. Overall, we characterize how DSB-induced compartmentalization orchestrates the DNA damage response and highlight the critical impact of chromosome architecture in genomic instability.


Asunto(s)
Compartimento Celular , Cromatina , Daño del ADN , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Fase G1 , Histonas/metabolismo , Neoplasias/genética , Estructuras R-Loop , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
4.
STAR Protoc ; 4(3): 102538, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37624700

RESUMEN

Temporal and spatial regulation of gene expression is crucial for proper embryonic development. Infrared laser-evoked gene operator (IR-LEGO) can provide information for various developmental processes. Here, we present a protocol to locally express cxcl12a during zebrafish olfactory organ development1 using a combination of IR-LEGO and live imaging. We describe steps for implementing IR-LEGO, biological sample preparation, live imaging, data collection, and analysis. This protocol can be applied to virtually any genetically modified experimental organism.


Asunto(s)
Luz , Pez Cebra , Animales , Pez Cebra/genética , Fenotipo
5.
Nat Commun ; 13(1): 3842, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35789161

RESUMEN

Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells.


Asunto(s)
Podosomas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimiento Celular , Elasticidad , Podosomas/metabolismo
6.
Elife ; 112022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727134

RESUMEN

Osteoclasts are unique in their capacity to degrade bone tissue. To achieve this process, osteoclasts form a specific structure called the sealing zone, which creates a close contact with bone and confines the release of protons and hydrolases for bone degradation. The sealing zone is composed of actin structures called podosomes nested in a dense actin network. The organization of these actin structures inside the sealing zone at the nano scale is still unknown. Here, we combine cutting-edge microscopy methods to reveal the nanoscale architecture and dynamics of the sealing zone formed by human osteoclasts on bone surface. Random illumination microscopy allowed the identification and live imaging of densely packed actin cores within the sealing zone. A cross-correlation analysis of the fluctuations of actin content at these cores indicates that they are locally synchronized. Further examination shows that the sealing zone is composed of groups of synchronized cores linked by α-actinin1 positive filaments, and encircled by adhesion complexes. Thus, we propose that the confinement of bone degradation mediators is achieved through the coordination of islets of actin cores and not by the global coordination of all podosomal subunits forming the sealing zone.


Asunto(s)
Resorción Ósea , Podosomas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Resorción Ósea/metabolismo , Citoesqueleto/metabolismo , Humanos , Osteoclastos/metabolismo , Podosomas/metabolismo
7.
Cell Rep Methods ; 1(1): 100009, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35474693

RESUMEN

Current super-resolution microscopy (SRM) methods suffer from an intrinsic complexity that might curtail their routine use in cell biology. We describe here random illumination microscopy (RIM) for live-cell imaging at super-resolutions matching that of 3D structured illumination microscopy, in a robust fashion. Based on speckled illumination and statistical image reconstruction, easy to implement and user-friendly, RIM is unaffected by optical aberrations on the excitation side, linear to brightness, and compatible with multicolor live-cell imaging over extended periods of time. We illustrate the potential of RIM on diverse biological applications, from the mobility of proliferating cell nuclear antigen (PCNA) in U2OS cells and kinetochore dynamics in mitotic S. pombe cells to the 3D motion of myosin minifilaments deep inside Drosophila tissues. RIM's inherent simplicity and extended biological applicability, particularly for imaging at increased depths, could help make SRM accessible to biology laboratories.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Iluminación , Animales , Microscopía Fluorescente/métodos , Drosophila
8.
J Opt Soc Am A Opt Image Sci Vis ; 36(12): 2025-2029, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873375

RESUMEN

The standard two-dimensional (2D) image recorded in bright-field fluorescence microscopy is rigorously modeled by a convolution process involving a three-dimensional (3D) sample and a 3D point spread function. We show on synthetic and experimental data that deconvolving the 2D image using the appropriate 3D point spread function reduces the contribution of the out-of-focus fluorescence, resulting in a better image contrast and resolution. This approach is particularly interesting for superresolution speckle microscopy, in which the resolution gain stems directly from the efficiency of the deconvolution of each speckle image.

9.
Biomaterials ; 221: 119404, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419651

RESUMEN

The small intestine is a complex tissue with a crypt/villus architecture and high tissue polarity. Maintenance of tissue integrity and function is supported by a constant renewal of the epithelium, with proliferative cells located in the crypts and differentiated cells migrating upward to the top of villi. So far, most in vitro studies have been limited to 2D surfaces or 3D organoid cultures that do not fully recapitulate the tissue 3D architecture, microenvironment and cell compartmentalization found in vivo. Here, we report the development of a 3D model that reproduces more faithfully the architecture of the intestinal epithelium in vitro. We developed a new fabrication process combining a photopolymerizable hydrogel that supports the growth of intestinal cell lines with high-resolution stereolithography 3D printing. This approach offers the possibility to create artificial 3D scaffolds matching the dimensions and architecture of mouse intestinal crypts and villi. We demonstrate that these 3D culture models support the growth and differentiation of Caco-2 cells for 3 weeks. These models may constitute a complementary approach to organoid cultures to study intestinal homeostasis by allowing guided self-organization and controlled differentiation, as well as for in vitro drug screening and testing.


Asunto(s)
Hidrogeles/química , Mucosa Intestinal/citología , Estereolitografía , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Células CACO-2 , Diferenciación Celular , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Ingeniería de Tejidos/métodos
10.
Genes Dev ; 33(17-18): 1175-1190, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31395742

RESUMEN

The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. DNA double-strand breaks (DSBs) within rDNA induce both rDNA transcriptional repression and nucleolar segregation, but the link between the two events remains unclear. Here we found that DSBs induced on rDNA trigger transcriptional repression in a cohesin- and HUSH (human silencing hub) complex-dependent manner throughout the cell cycle. In S/G2 cells, transcriptional repression is further followed by extended resection within the interior of the nucleolus, DSB mobilization at the nucleolar periphery within nucleolar caps, and repair by homologous recombination. We showed that nuclear envelope invaginations frequently connect the nucleolus and that rDNA DSB mobilization, but not transcriptional repression, involves the nuclear envelope-associated LINC complex and the actin pathway. Altogether, our data indicate that rDNA break localization at the nucleolar periphery is not a direct consequence of transcriptional repression but rather is an active process that shares features with the mobilization of persistent DSB in active genes and heterochromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Ribosómico/genética , Regulación de la Expresión Génica/genética , ARN Largo no Codificante/metabolismo , Nucléolo Celular/metabolismo , Histonas/metabolismo , Recombinación Homóloga/genética , Membrana Nuclear/metabolismo , Cohesinas
11.
Nano Lett ; 18(10): 6326-6333, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30232897

RESUMEN

In vivo, immune cells migrate through a wide variety of tissues, including confined and constricting environments. Deciphering how cells apply forces when infiltrating narrow areas is a critical issue that requires innovative experimental procedures. To reveal the distribution and dynamics of the forces of cells migrating in confined environments, we designed a device combining microchannels of controlled dimensions with integrated deformable micropillars serving as sensors of nanoscale subcellular forces. First, a specific process composed of two steps of photolithography and dry etching was tuned to obtain micrometric pillars of controlled stiffness and dimensions inside microchannels. Second, an image-analysis workflow was developed to automatically evaluate the amplitude and direction of the forces applied on the micropillars by migrating cells. Using this workflow, we show that this microdevice is a sensor of forces with a limit of detection down to 64 pN. Third, by recording pillar movements during the migration of macrophages inside the confining microchannels, we reveal that macrophages bent the pillars with typical forces of 0.3 nN and applied higher forces at the cell edges than around their nuclei. When the degree of confinement was increased, we found that forces were redirected from inward to outward. By providing a microdevice that allows the analysis of force direction and force magnitude developed by confined cells, our work paves the way for investigating the mechanical behavior of cells migrating though 3D constricted environments.


Asunto(s)
Técnicas de Cultivo de Célula , Núcleo Celular/química , Dispositivos Laboratorio en un Chip , Macrófagos/química , Técnicas Biosensibles/métodos , Adhesión Celular/genética , Movimiento Celular/genética , Núcleo Celular/genética , Microambiente Celular/genética , Voluntarios Sanos , Humanos , Fenómenos Mecánicos , Monocitos/química
12.
Nat Commun ; 9(1): 1210, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29572440

RESUMEN

The actomyosin cytoskeleton, a key stress-producing unit in epithelial cells, oscillates spontaneously in a wide variety of systems. Although much of the signal cascade regulating myosin activity has been characterized, the origin of such oscillatory behavior is still unclear. Here, we show that basal myosin II oscillation in Drosophila ovarian epithelium is not controlled by actomyosin cortical tension, but instead relies on a biochemical oscillator involving ROCK and myosin phosphatase. Key to this oscillation is a diffusive ROCK flow, linking junctional Rho1 to medial actomyosin cortex, and dynamically maintained by a self-activation loop reliant on ROCK kinase activity. In response to the resulting myosin II recruitment, myosin phosphatase is locally enriched and shuts off ROCK and myosin II signals. Coupling Drosophila genetics, live imaging, modeling, and optogenetics, we uncover an intrinsic biochemical oscillator at the core of myosin II regulatory network, shedding light on the spatio-temporal dynamics of force generation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Miosina Tipo II/química , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Actomiosina/química , Animales , Animales Modificados Genéticamente , Drosophila/genética , Femenino , Transferencia Resonante de Energía de Fluorescencia , Luz , Masculino , Microscopía Confocal , Optogenética , Oscilometría , Transducción de Señal , Quinasas Asociadas a rho
13.
IEEE Trans Image Process ; 26(5): 2480-2493, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28252396

RESUMEN

The blind structured illumination microscopy strategy proposed by Mudry et al. is fully re-founded in this paper, unveiling the central role of the sparsity of the illumination patterns in the mechanism that drives super-resolution in the method. A numerical analysis shows that the resolving power of the method can be further enhanced with optimized one-photon or two-photon speckle illuminations. A much improved numerical implementation is provided for the reconstruction problem under the image positivity constraint. This algorithm rests on a new preconditioned proximal iteration faster than existing solutions, paving the way to 3D and real-time 2D reconstruction.

14.
ACS Nano ; 11(4): 4028-4040, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28355484

RESUMEN

Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.


Asunto(s)
Podosomas/química , Actinas/química , Actinas/metabolismo , Fenómenos Biomecánicos , Adhesión Celular , Células Cultivadas , Simulación por Computador , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Mecanotransducción Celular , Monocitos/citología , Monocitos/metabolismo , Nanoestructuras/química , Tamaño de la Partícula , Paxillin/química , Paxillin/metabolismo , Podosomas/ultraestructura , Propiedades de Superficie , Talina/química , Talina/metabolismo , Vinculina/química , Vinculina/metabolismo
15.
J Cell Sci ; 129(24): 4480-4495, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27831493

RESUMEN

How spatial organization of the genome depends on nuclear shape is unknown, mostly because accurate nuclear size and shape measurement is technically challenging. In large cell populations of the yeast Saccharomyces cerevisiae, we assessed the geometry (size and shape) of nuclei in three dimensions with a resolution of 30 nm. We improved an automated fluorescence localization method by implementing a post-acquisition correction of the spherical microscopic aberration along the z-axis, to detect the three dimensional (3D) positions of nuclear pore complexes (NPCs) in the nuclear envelope. Here, we used a method called NucQuant to accurately estimate the geometry of nuclei in 3D throughout the cell cycle. To increase the robustness of the statistics, we aggregated thousands of detected NPCs from a cell population in a single representation using the nucleolus or the spindle pole body (SPB) as references to align nuclei along the same axis. We could detect asymmetric changes of the nucleus associated with modification of nucleolar size. Stereotypical modification of the nucleus toward the nucleolus further confirmed the asymmetric properties of the nuclear envelope.


Asunto(s)
Ciclo Celular , Forma del Núcleo Celular , Microscopía Confocal/métodos , Saccharomycetales/citología , Carbono/farmacología , Ciclo Celular/efectos de los fármacos , Forma del Núcleo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Imagenología Tridimensional , Interfase/efectos de los fármacos , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Saccharomycetales/efectos de los fármacos , Saccharomycetales/metabolismo
16.
Cell Rep ; 13(8): 1598-609, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26586426

RESUMEN

DNA double-strand breaks (DSBs) elicit the so-called DNA damage response (DDR), largely relying on ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PKcs), two members of the PI3K-like kinase family, whose respective functions during the sequential steps of the DDR remains controversial. Using the DIvA system (DSB inducible via AsiSI) combined with high-resolution mapping and advanced microscopy, we uncovered that both ATM and DNA-PKcs spread in cis on a confined region surrounding DSBs, independently of the pathway used for repair. However, once recruited, these kinases exhibit non-overlapping functions on end joining and γH2AX domain establishment. More specifically, we found that ATM is required to ensure the association of multiple DSBs within "repair foci." Our results suggest that ATM acts not only on chromatin marks but also on higher-order chromatin organization to ensure repair accuracy and survival.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/metabolismo , Línea Celular , Cromatina/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Histonas/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo
18.
ACS Nano ; 9(4): 3800-13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25791988

RESUMEN

Podosomes are mechanosensitive adhesion cell structures that are capable of applying protrusive forces onto the extracellular environment. We have recently developed a method dedicated to the evaluation of the nanoscale forces that podosomes generate to protrude into the extracellular matrix. It consists in measuring by atomic force microscopy (AFM) the nanometer deformations produced by macrophages on a compliant Formvar membrane and has been called protrusion force microscopy (PFM). Here we perform time-lapse PFM experiments and investigate spatial correlations of force dynamics between podosome pairs. We use an automated procedure based on finite element simulations that extends the analysis of PFM experimental data to take into account podosome architecture and organization. We show that protrusion force varies in a synchronous manner for podosome first neighbors, a result that correlates with phase synchrony of core F-actin temporal oscillations. This dynamic spatial coordination between podosomes suggests a short-range interaction that regulates their mechanical activity.


Asunto(s)
Actinas/metabolismo , Fenómenos Mecánicos , Podosomas/metabolismo , Actinas/química , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Macrófagos/citología , Microscopía de Fuerza Atómica , Modelos Moleculares , Monocitos/citología , Conformación Proteica
19.
Nature ; 518(7538): 245-8, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25607361

RESUMEN

Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.


Asunto(s)
Apoptosis , Polaridad Celular , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Células Epiteliales/citología , Epitelio/embriología , Morfogénesis , Uniones Adherentes/química , Uniones Adherentes/metabolismo , Animales , Forma de la Célula , Células Epiteliales/metabolismo , Modelos Biológicos , Miosina Tipo II/metabolismo
20.
Phys Rev Lett ; 112(2): 028301, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24484045

RESUMEN

A bimolecular synthetic reaction (imine synthesis) was performed compartmentalized in micrometer-diameter emulsion droplets. The apparent equilibrium constant (Keq) and apparent forward rate constant (k1) were both inversely proportional to the droplet radius. The results are explained by a noncatalytic reaction-adsorption model in which reactants adsorb to the droplet interface with relatively low binding energies of a few kBT, react and diffuse back to the bulk. Reaction thermodynamics is therefore modified by compartmentalization at the mesoscale--without confinement on the molecular scale--leading to a universal mechanism for improving unfavorable reactions.


Asunto(s)
Química Orgánica/métodos , Iminas/síntesis química , Modelos Químicos , Adsorción , Aldehídos/química , Aminas/química , Química Orgánica/instrumentación , Difusión , Iminas/química , Cinética , Propiedades de Superficie , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...