Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncoimmunology ; 4(10): e1041700, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26451306

RESUMEN

NGR-TNF is a vascular targeting agent in advanced clinical development, coupling tumor necrosis factor-α (TNF) with the CNGRCG peptide, which targets a CD13 isoform specifically expressed by angiogenic vessels. Antitumor efficacy of NGR-TNF has been described in different transplantation tumor models. Nevertheless, the mechanism underlying its activity is not fully understood. In the wild type and in the immunodeficient (RAG-/-) RIP1-Tag2 models of multistage pancreatic carcinogenesis, we demonstrate that CD13 is highly expressed on endothelial cells of hyperplastic and angiogenic islets, whereas its expression is down regulated in tumors where it partially colocalize with pericytes. In vivo CNGRCG peptides coupled to fluorescent nanoparticles (quantum dots) bind to CD13 and colocalize with anti-CD31, in pancreatic islets. At early stage, low doses of NGR-murine (m)TNF have a direct cytotoxic effect inducing endothelial cell apoptosis, reducing vessel density and eventually inhibiting the development of angiogenic islets. At a later stage, NGR-mTNF is able to reduce tumor growth inducing vascular normalization, exclusively when treatment is carried out in the immunocompetent mice. Interestingly, NGR-mTNF-treated tumors from these mice are characterized by CD8+ T cell infiltration. At molecular level, overexpression of genes involved in vessels normalization was detected only in NGR-mTNF-treated tumors from immunocompetent mice. These findings identified a new mechanism of action of NGR-mTNF, providing support for the development of new therapeutic strategies combining chemotherapy or active/adoptive immunotherapies to low dose NGR-TNF treatment.

2.
Clin Exp Metastasis ; 32(3): 289-300, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25648442

RESUMEN

Tumor vessels are an attractive target for cancer therapy, including metastasis treatment. Angiogenesis inhibitors targeting the VEGF signalling pathway have proven to be efficacious in preclinical cancer models and in clinical trials. However, angiogenesis inhibition concomitantly elicits tumor adaptation and progression to stages of greater malignancy, with heightened invasiveness and in some cases increased distant metastasis. Here, we investigated whether NGR-TNF, a vascular targeting agent in phase III clinical development, coupling the CNGRCG angiogenic vessel-homing peptide with TNF-α, has an effect on metastasis in a model of murine breast cancer, which spontaneously metastasize to lungs, and on the growth of experimental melanoma lung metastasis. We report that NGR-TNF does not increase cancer invasiveness, as other antiangiogenics agents do, but controls metastatic growth in both models, both when administered as primary treatment and in adjuvant settings, improving the overall survival of metastasis-bearing mice.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Mamarias Animales/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Neovascularización Patológica/prevención & control , Proteínas Recombinantes de Fusión/uso terapéutico , Factor de Necrosis Tumoral alfa/uso terapéutico , Animales , Femenino , Citometría de Flujo , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Animales/mortalidad , Neoplasias Mamarias Animales/patología , Melanoma Experimental/mortalidad , Melanoma Experimental/secundario , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tasa de Supervivencia , Células Tumorales Cultivadas
3.
Blood ; 109(11): 4708-15, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17327417

RESUMEN

Gene therapy is a promising therapeutic strategy for genetic and acquired hematologic diseases. With the improvements in gene transfer and expression, factors affecting safety and efficacy of gene therapy can now be evaluated to establish the best clinical benefit-to-risk ratio. The induction of immune responses against gene therapy components is one of the potential limitations. We studied the occurrence of such event in 23 patients treated with donor lymphocyte infusions (DLIs), with lymphocytes transduced to express the HSV-TK suicide gene for relapse of hematologic malignancies occurring after allogeneic hematopoietic stem cell transplantation (HSCT). The suicide gene was used to selectively control graft-versus-host disease (GvHD). Seven patients given infusions late after HSCT developed an immune response against the transgene. Immunization involved appearance of thymidine kinase (TK)-specific CD8(+) effectors and required a level of immunocompetence at the time of TK-DLI that can be achieved only several months after transplantation. This did not prevent graft-versus-leukemia (GvL) effect of the TK-DLI, since 5 of 7 immunized patients maintained the complete remission achieved prior to immunization. We suggest that appropriate study designs taking into account the immune suppression of the patient and time-kinetics of GvL mediated by TK-transduced donor lymphocytes may allow the full exploitation of TK-DLI.


Asunto(s)
Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Células Madre Hematopoyéticas/citología , Linfocitos/metabolismo , Timidina Quinasa/genética , Animales , Complejo CD3/biosíntesis , Linfocitos T CD8-positivos/metabolismo , Línea Celular , Terapia Genética/métodos , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/terapia , Neoplasias Hematológicas/inmunología , Células Madre Hematopoyéticas/enzimología , Humanos , Interferón gamma/metabolismo , Riesgo , Simplexvirus/enzimología , Simplexvirus/genética , Transgenes
4.
Cancer Immunol Immunother ; 56(7): 1065-76, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17195078

RESUMEN

PURPOSE: The aim of this study was to characterize the immune response of patients affected by renal cell carcinoma (RCC). METHODS: Long-term RCC lines were established by retroviral-mediated transfer of the large T-antigen of SV40 into fresh carcinoma cells. Reactive T cell effectors were generated by iterative stimulations of patients' PBMC with autologous tumour cells. RESULTS: This protocol led to the induction of CD8(+) T cell clones reactive against the autologous tumour, but not against NK-sensitive cell lines. However, some of these effectors recognize normal renal cells, allogeneic renal carcinoma cell lines and colon and non-small cell lung carcinomas but not melanomas and lymphoblastoid lines, without evidence of shared classical HLA class I (HLA-I) molecules. Further characterization performed on the CD8(+) TCR alpha/beta(+) clone, CTL30, demonstrated that neither expression of CD1, HLA-Ia nor HLA-Ib, correlated with the T cells' recognition. Moreover, beta2m expression by target cells was not required to achieve interaction of tumour-effector cells. In agreement with this observation, the lytic activity of CTL30 was not inhibited by anti-HLA-I Ab, and antigen expression was not affected by inhibitors of antigen processing. Lytic activity of CTL30, while partially inhibited by anti-NKG2D, could not be abolished by anti-CD3 Abs. Moreover, growth and expansion of CTL30 was sustained only by T cell interaction with antigen-expressing tumour cells; unspecific mitogenic stimuli, such as anti-CD3 and PHA, did not allow T cell expansion. These results demonstrated the existence of an alpha/beta T cell population, recognizing epithelial tumour cells through an HLA-unrestricted, CD3-independent mechanism.


Asunto(s)
Complejo CD3/inmunología , Linfocitos T CD8-positivos/inmunología , Carcinoma de Células Renales/inmunología , Antígenos HLA/inmunología , Neoplasias Renales/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Citometría de Flujo , Humanos , Activación de Linfocitos/inmunología
5.
J Exp Med ; 201(8): 1293-305, 2005 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-15837814

RESUMEN

The effects of a chimeric monoclonal antibody (chA6 mAb) that recognizes both the RO and RB isoforms of the transmembrane protein tyrosine phosphatase CD45 on human T cells were investigated. Chimeric A6 (chA6) mAb potently inhibited antigen-specific and polyclonal T cell responses. ChA6 mAb induced activation-independent apoptosis in CD4(+)CD45RO/RB(high) T cells but not in CD8(+) T cells. In addition, CD4(+) T cell lines specific for tetanus toxoid (TT) generated in the presence of chA6 mAb were anergic and suppressed the proliferation and interferon (IFN)-gamma production by TT-specific effector T cells by an interleukin-10-dependent mechanism, indicating that these cells were equivalent to type 1 regulatory T cells. Similarly, CD8(+) T cell lines specific for the influenza A matrix protein-derived peptide (MP.58-66) generated in the presence of chA6 mAb were anergic and suppressed IFN-gamma production by MP.58-66-specific effector CD8(+) T cells. Furthermore, chA6 mAb significantly prolonged human pancreatic islet allograft survival in nonobese diabetic/severe combined immunodeficiency mice injected with human peripheral blood lymphocytes (hu-PBL-NOD/SCID). Together, these results demonstrate that the chA6 mAb is a new immunomodulatory agent with multiple modes of action, including deletion of preexisting memory and recently activated T cells and induction of anergic CD4(+) and CD8(+) regulatory T cells.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Antígenos Comunes de Leucocito/inmunología , Animales , Apoptosis , Complejo CD3 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Células Cultivadas , Supervivencia de Injerto , Humanos , Trasplante de Islotes Pancreáticos/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Microfilamentos , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteínas Tirosina Quinasas , Toxoide Tetánico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA