Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(18)2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37759475

RESUMEN

The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.


Asunto(s)
Sistema Nervioso Central , Endosomas , Hígado , Músculos , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico
2.
RSC Adv ; 13(29): 19898-19954, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37404320

RESUMEN

Herein, we have summarized the vast array of synthetic processes that have been developed for the synthesis of C-glycopyranosyl aldehydes and diverse C-glycoconjugates derived from them by covering the literature reported from 1979 to 2023. Notwithstanding its challenging chemistry, C-glycosides are considered stable pharmacophores and are used as important bioactive molecules. The discussed synthetic methodologies to access C-glycopyranosyl aldehydes take advantage of seven key intermediates, viz. allene, thiazole, dithiane, cyanide, alkene, and nitromethane. Furthermore, the integration of complex C-glycoconjugates derived from varied C-glycopyranosyl aldehydes involves nucleophilic addition/substitution, reduction, condensation, oxidation, cyclo condensation, coupling, and Wittig reactions. In this review, we have categorized the synthesis of C-glycopyranosyl aldehydes and C-glycoconjugates on the basis of the methodology used for their synthesis and on types of C-glycoconjugates, respectively.

3.
Curr Org Synth ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37138439

RESUMEN

This article covers the triazole-linked nucleic acids where the triazole linkage (TL) replaces the natural phosphate backbone. The replacement is done at either a few selected linkages or all the phosphate linkages. Two triazole linkages, the four-atom TL1 and the six-atom TL2, have been discussed in detail. These triazole-modified oligonucleotides have found a wide range of applications, from therapeutics to synthetic biology. For example, the triazole-linked oligonucleotides have been used in the antisense oligonucleotide (ASO), small interfering RNA (siRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology as therapeutic agents. Due to the ease of the synthesis and a wide range of biocompatibility, the triazole linkage TL2 has been used to assemble a functional 300-mer DNA from alkyne- and azide-functionalized 100-mer oligonucleotides as well as an epigenetically modified variant of a 335 base-pair gene from ten short oligonucleotides. These outcomes highlight the potential of triazole-linked nucleic acids and open the doors for other TL designs and artificial backbones to fully exploit the vast potential of artificial nucleic acids in therapeutics, synthetic biology and biotechnology.

4.
Curr Protoc ; 1(12): e328, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34936733

RESUMEN

Trifluoromethylated nucleosides, such as trifluridine, have widespread applications in pharmaceuticals as anticancer and antiviral agents. However, site-selective addition of a trifluoromethyl group onto a nucleobase typically requires either inconvenient multi-step synthesis or expensive trifluoromethylation reagents, or results in low yield. This article describes a simple, scalable, and high-yielding protocol for late-stage direct trifluoromethylation of pyrimidine nucleosides via a microwave-irradiated pathway. First, 5-iodo pyrimidine nucleosides undergo complete benzoylation to obtain N3 -benzoyl-3',5'-di-O-benzoyl-5-iodo-pyrimidine nucleosides as key precursors. Next, trifluoromethylation is carried out under both conventional and microwave heating using an inexpensive and commercially accessible Chen's reagent, i.e., methyl fluorosulfonyldifluoroacetate, to produce N3 -benzoyl-3',5'-di-Obenzoyl-5-trifluoromethyl-pyrimidine nucleosides. The microwave-assisted transformation accentuates its simplicity, mild reaction conditions, and dominance, providing a facile route to access trifluoromethylation. Finally, the envisioned 5-trifluoromethyl pyrimidine nucleosides are obtained by a routine debenzoylation procedure. This concludes a convenient three-step synthesis to obtain trifluridine and its 2'-modified analogs on a gram scale with consistently high yields, starting from their respective iodo-precursors, and requires only one chromatographic purification at the trifluoromethylation step. Furthermore, this operationally simple protocol can be utilized as a definitive methodology to produce various other trifluoromethylated therapeutics. © 2021 Wiley Periodicals LLC. Basic Protocol: Synthesis of 5-trifluoromethyl pyrimidine nucleosides 4a-c Alternate Protocol: Conventional trifluoromethylation: Synthesis of N3-benzoyl-3',5'-di-O-benzoyl-5-trifluoromethyl pyrimidine nucleosides (3a-c).


Asunto(s)
Nucleósidos de Pirimidina , Antivirales , Microondas , Nucleósidos
5.
Carbohydr Res ; 492: 108013, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32335391

RESUMEN

Synthesis of 2'-O,5'-C-bridged-ß-d-homolyxofuranosyl nucleosides U and T have been achieved starting from diacetone-d-glucose in overall yields 55.7 and 57.1%, respectively. Quantitative regioselective monoacetylation of the lone primary hydroxyl group in trihydroxy nucleoside intermediate, i.e. 3'-O-benzyl-ß-d-glucofuranosyl nucleosides mediated by Novozyme®-435 has been utilized as the key step in the synthesis of homolyxofuranosyl nucleosides. The structure of the synthesized 2'-O,5'-C-bridged-ß-d-homolyxofuranosyl uracil and -thymine has been established on the basis of their spectral (IR, 1H, 13C NMR and HRMS) data analysis and the structure of earlier nucleoside was confirmed by its X-rays diffraction analysis which revealed that these 2'-O,5'-C-bridged homo-nucleosides are locked into S-type sugar puckering.


Asunto(s)
Nucleósidos de Pirimidina/síntesis química , Timina/síntesis química , Uracilo/síntesis química , Conformación de Carbohidratos , Nucleósidos de Pirimidina/química , Timina/análogos & derivados , Timina/química , Uracilo/análogos & derivados , Uracilo/química
6.
RSC Adv ; 9(58): 33931-33940, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35528928

RESUMEN

Herein, the synthesis and characterization of ideal size (∼10 and 40 nm, in diameter) AuNPs (gold nanoparticles) were reported. Two different organic solvents such as DMF (dimethyl formamide) and NMPL (N-methyl-2-pyrrolidone) were used to synthesize AuNPs along with agents reducing agents such as NaBH4 (sodium borohydrate) and Na3C6H5O7 (sodium citrate). The combination of [(HAuCl4)-(DMF)-(NaBH4)] gives AuNPs with an avg. size of 10.2 nm. Similarly, the combination of [(HAuCl4)-(NMPL)-(Na3C6H5O7)] gives AuNPs with an avg. size of 40.4 nm. The morphology of these nanoscale AuNPs has been characterized through TEM and HRTEM imaging followed by SAED for lattice parameters such as d-spacing value (2.6 Å/0.26 nm) of crystalline metal (Au) nanoparticles. Further, these unique and ideal nanoscale AuNPs were used to evaluate the potential working efficacy by using in vitro cell based studies on K562 (leukaemia) blood cancer cells. From the MTT assay results around 88% cell inhibition was measured for ∼10 nm sized AuNPs. The treated cells were stained with different fluorescent dyes such as FITC, DAPI, Rho-6G and their ruptured morphology has been reported in the respective sections. These types of ideal sized metal (Au) nanoparticles are recommended for various theranostics such as to cure breast, colon, lung and liver cancers.

7.
Artículo en Inglés | MEDLINE | ID: mdl-25965328

RESUMEN

Three triazole-linked nonionic xylo-nucleoside dimers T(L)-t-T(xL), T(L)-t-A(BzxL) and T(L)-t-C(BzxL) have been synthesized for the first time by Cu(I) catalyzed azide-alkyne [3 + 2] cycloaddition reaction (CuAAC) of 1-(3'-azido-3'-deoxy-2'-O,4'-C-methylene-ß-D-ribo-furanosyl)thymine with different alkynes, i.e., 1-(5'-deoxy-5'-C-ethynyl-2'-O,4'-C-methylene-ß-D-xylofuranosyl)thymine, 9-(5'-deoxy-5'-C-ethynyl-2'-O,4'-C-methylene-ß-D-xylo-furanosyl)-N6-benzoyladenine and 1-(5'-deoxy-5'-C-ethynyl-2'-O,4'-C-methylene-ß-D-xylofuranosyl)-N4-benzoylcytosine in 90%-92% yields. Among the two Cu(I) reagents, CuSO4.5H2O-sodium ascorbate in THF:(t)BuOH:H2O (1:1:1) and CuBr.SMe2 in THF used for cycloaddition (click) reaction, the former one was found to be better yielding than the latter one.


Asunto(s)
Nucleósidos de Pirimidina/síntesis química , Triazoles/química , Xilosa/química , Nucleósidos de Pirimidina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...