Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 7(1): e06100, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33553758

RESUMEN

The activity of the erythrocyte Cu2,Zn2-superoxide dismutase (SOD1) is altered in Alzheimer's disease (AD) patients. These patients, compared to healthy subjects, exhibit low plasmatic zinc (Zn) levels in the presence of high plasmatic levels of copper (Cu). SOD1 is an antioxidant enzyme characterized by the presence of two metal ions, Cu and Zn, on its active site. On the SOD1, Cu exerts a catalytic role, and Zn serves a structural function. In this study, we generated a modified SOD1 characterized by an altered capacity to complex Zn. The study investigates the metal-binding dynamics of the enzyme, estimating the stability of a SOD1 protein lacking the appropriate Zn site complexation. Our mutant SOD1 possesses a double amino acid mutation (T135S and K136E) that interferes with the correct Zn site complexation. We found that the protein mutations produce unstable Zn coordination and lower enzymatic activity even when complexed with Cu. Analysis with circular dichroism (CD) spectra on metal titration showed a considerable difference between the two Zn entries in the native dimeric enzyme, and Cu presents a simultaneous entrance in the protein. Otherwise, the mutant T135S,K136E-SOD1 exhibited Zn and Cu complexation instability, being a useful in vitro model to study the SOD1 behavior in AD patients.

2.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 62-71, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30442347

RESUMEN

In this work, we aim to provide evidence for the protective effect of a copper chelator, neocuproine (NeoCu), against the oxidative stress in NSC34 cells, which inhibits biomolecule oxidation and cell death. Results obtained with the comet assay allowed to determine the increase in oxidized purines and pyrimidines by H2O2 exposure, and their changes after the addition of NeoCu. We also observed a higher ATP7b activity in nuclei and a higher Cu concentration inside the cells, proving that the NeoCu acts directly in DNA to promote cell recovery in oxidative stress conditions, also observed in Reactive Oxygen Species (ROS) detection assay by Flow Cytometry. Based on these results, we propose that NeoCu is a promising drug for the protection of motor neuron cells during oxidative stress caused by neurodegenerative diseases in this system.


Asunto(s)
Quelantes/farmacología , Daño del ADN , Peróxido de Hidrógeno/toxicidad , Neuroblastoma/prevención & control , Estrés Oxidativo/efectos de los fármacos , Fenantrolinas/farmacología , Sustancias Protectoras/farmacología , Cobre/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Humanos , Neuroblastoma/patología , Oxidantes/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
3.
Beilstein J Org Chem ; 14: 1693-1703, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013694

RESUMEN

About 1 in 8 U.S. women (≈12%) will develop invasive breast cancer over the course of their lifetime. Surgery, chemotherapy, radiotherapy, and hormone manipulation constitute the major treatment options for breast cancer. Here, we show that both a natural antimicrobial peptide (AMP) derived from wasp venom (decoralin, Dec-NH2), and its synthetic variants generated via peptide design, display potent activity against cancer cells. We tested the derivatives at increasing doses and observed anticancer activity at concentrations as low as 12.5 µmol L-1 for the selective targeting of MCF-7 breast cancer cells. Flow cytometry assays further revealed that treatment with wild-type (WT) peptide Dec-NH2 led to necrosis of MCF-7 cells. Additional atomic force microscopy (AFM) measurements indicated that the roughness of cancer cell membranes increased significantly when treated with lead peptides compared to controls. Biophysical features such as helicity, hydrophobicity, and net positive charge were identified to play an important role in the anticancer activity of the peptides. Indeed, abrupt changes in peptide hydrophobicity and conformational propensity led to peptide inactivation, whereas increasing the net positive charge of peptides enhanced their activity. We present peptide templates with selective activity towards breast cancer cells that leave normal cells unaffected. These templates represent excellent scaffolds for the design of selective anticancer peptide therapeutics.

4.
Molecules ; 20(8): 13575-90, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26213911

RESUMEN

Three phthalocyanine derivatives were synthesized and characterized: one modified with a racemic mixture of 1-(4-bromophenyl)ethanol and two other macrocycles modified with each one of the enantioenriched isomers (R)-1-(4-bromophenyl)ethanol and (S)-1-(4-bromophenyl)ethanol. The compounds were characterized by 1H-NMR spectroscopy, mass spectrometry, UV-Vis absorption, and excitation and emission spectra. Additionally, partition coefficient values and the quantum yield of the generation of oxygen reactive species were determined. Interestingly, the phthalocyanine containing a (R)-1-(4-bromophenyl)ethoxy moiety showed higher quantum yield of reactive oxygen species generation than other compounds under the same conditions. In addition, the obtained fluorescence microscopy and cell viability results have shown that these phthalocyanines have different interactions with mammary MCF-7 cells. Therefore, our results indicate that the photochemical and biological properties of phthalocyanines with chiral ligands should be evaluated separately for each enantiomeric species.


Asunto(s)
Alcoholes/química , Antineoplásicos , Indoles , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Indoles/síntesis química , Indoles/química , Indoles/farmacología , Isoindoles , Células MCF-7 , Espectrofotometría Ultravioleta
5.
Toxicol In Vitro ; 27(1): 349-57, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22951949

RESUMEN

Dithiocarbamates are nitrogen- and sulfur-containing compounds commonly used in pharmacology, medicine and agriculture. The molecular effects of dithiocarbamates on neuronal cell systems are not fully understood, especially in terms of their ability to accumulate copper ions inside the cell. In this work, the molecular effects of N,N-diethyldithiocarbamate (DEDTC) were studied in human SH-SY5Y neuroblastoma cells to determine the role of copper in the DEDTC toxicity and the pathway trigged in cell by the complex Cu-DEDTC. From concentration-dependent studies, we found that 5 µM of this compound induced a drastic decrease in viable cells with a concomitant accumulation in intracellular copper resulted from complexation with DEDTC, measured by atomic absorption spectroscopy. The mechanism of DEDTC-induced apoptosis in neuronal model cells is thought to occur through the death receptor signaling triggered by DEDTC-copper complex in low concentration that is associated with the activation of caspase 8. Our results indicated that the mechanism of cell death involves cytochrome c release forming the apoptosome together with Apaf-1 and caspase 9, converting the caspase 9 into its active form, allowing it to activate caspase 3 as observed by immunofluorescence. This pathway is induced by the cytotoxic effects that occur when DEDTC forms a complex with the copper ions present in the culture medium and transports them into the cell, suggesting that the DEDTC by itself was not able to cause cell death and the major effect is from its copper-complex in neuroblastoma cells. The present study suggests a role for the influence of copper by low concentrations of DEDTC in the extracellular media, the absorption and accumulation of copper in the cell and apoptotic events, induced by the cytotoxic effects that occur when DEDTC forms a complex with the copper ions.


Asunto(s)
Caspasas/metabolismo , Cobre/metabolismo , Citocromos c/metabolismo , Ditiocarba/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Neuroblastoma/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...