Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 196: 106427, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479295

RESUMEN

The Western Indian Continental Shelf (WICS) experiences upwelling during the Southwest Monsoon (SWM), leading to deoxygenation and acidification of subsurface waters. The region has patchy growth of corals, e.g. in the Grande Island and Angria Bank. Measurements made during the late SWM of 2022 reveal that the shelf waters around the Grande Island were subject to varying environmental conditions, viz. lower temperature (21.3-26.1°C), oxygen (0-4.9 mL L-1) and pHT (7.506-7.927). Complete anoxia was associated with sulphide build-up to a maximum of 5.9 µmol L-1 at 17 m depth. An additional episodic condition (high temperature, low oxygen and pH) also occurred associated presumably with a plankton bloom in April 2017. Hence, unlike the offshore coral site Angria Bank, waters around the Grande Island experiences extreme changes in physico-chemical conditions (e.g. Ωarg ∼1.2-1.8 during October 2022) seasonally as reported here. The biogeochemical conditions are however not as intense (Ωarg = 0.6) as observed along the eastern boundary upwelling system of the Pacific Ocean.


Asunto(s)
Antozoos , Animales , Ecosistema , Océano Pacífico , India , Oxígeno , Arrecifes de Coral
2.
Microb Pathog ; 113: 113-123, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29038057

RESUMEN

Coral mucus is one of the key localization in the coral holobiont, as this serves as an energy rich substrate for a wide range of abundant, diverse and multifunctional microbiota. However, very little is known about the functional role of bacterial communities in their associations with corals. In the present study, a total of 48 isolates were obtained from Porites lutea wherein the genus of Bacillus sp. and Vibrio sp. were predominant. Bio-prospecting the coral mucus revealed the existence of (10.42%) antagonistic bacteria against the tested bacterial pathogens. Molecular taxonomy (16S rRNA) proved the identity of these antagonistic bacteria belong to Enterobacter cloacae (CM1), Bacillus subtilis (CM2), Bacillus sp. (CM11) and Bacillus marisflavi (CM12). The secondary screening emphasized that the ethyl acetate extract of B. subtilis showed strong antagonistic effect, followed by the chloroform extract of E. cloacae and ethyl acetate extract of B. marisflavi. The antagonistic activity was statistically confirmed by Principal Component Analysis and Hierarchical Cluster Analysis. The privileged coral mucus associated bacterial (CMAB) solvent extracts inhibited the bacterial pathogens at 100 µg/ml (MIC) and ceased the growth at 200 µg/ml (MBC). The hemolytic and brine shrimp lethality assays disclosed the non-toxic nature of solvent extracts of CMAB. Altogether, the present investigation brought out the diversity of bacteria associated with the mucus of P. lutea. In addition, bio-prospecting corroborated the CMAB as the potential source of pharmacologically important bioactive compounds against a wide range of bacterial pathogens.


Asunto(s)
Antozoos/microbiología , Bacillus/metabolismo , Moco/microbiología , Vibrio/metabolismo , Animales , Antozoos/metabolismo , Bacillus/genética , Bacillus/aislamiento & purificación , Arrecifes de Coral , Enterobacter cloacae/genética , Enterobacter cloacae/aislamiento & purificación , India , Microbiota , ARN Ribosómico 16S/genética , Vibrio/genética , Vibrio/aislamiento & purificación
3.
Environ Sci Pollut Res Int ; 24(4): 3912-3922, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27905045

RESUMEN

Coral reef ecosystems are disturbed in tandem by climatic and anthropogenic stressors. A number of factors act synergistically to reduce the live coral cover and threaten the existence of reefs. Continuous monitoring of the coral communities during 2012-2014 captured an unprecedented growth of macroalgae as a bloom at Gulf of Mannar (GoM) and Palk Bay (PB) which are protected and unprotected reefs, respectively. The two reefs varying in their protection level enabled to conduct an assessment on the response of coral communities and their recovery potential during and after the macroalgal bloom. Surveys in 2012 revealed a live coral cover of 36.8 and 14.6% in GoM and PB, respectively. Live coral cover was lost at an annual rate of 4% in PB due to the Caulerpa racemosa blooms that occurred in 2013 and 2014. In GoM, the loss of live coral cover was estimated to be 16.5% due to C. taxifolia bloom in 2013. Tissue regeneration by the foliose and branching coral morphotypes aided the recovery of live coral cover in GoM, whereas the chances for the recovery of live coral cover in PB reef were low, primarily due to frequent algal blooms, and the existing live coral cover was mainly due to the abundance of slow-growing massive corals. In combination, results of this study suggested that the recovery of a coral reef after a macroalgal bloom largely depends on coral species composition and the frequency of stress events. A further study linking macroalgal bloom to its specific cause is essential for the successful intervention and management.


Asunto(s)
Antozoos/fisiología , Caulerpa/fisiología , Animales , Arrecifes de Coral , Eutrofización , Océano Índico
4.
Biomed Pharmacother ; 84: 60-70, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27636513

RESUMEN

A simple eco-friendly approach for the hasty synthesis of stable, potent and benign silver nanoparticles (AgNPs) using seagrass, Syringodium isoetifolium was proposed and described here. The UV-Vis, DLS, XRD, AFM, FESEM, EDX and HRTEM analysis highly characterized and confirmed the presence of polydispersed (2-50nm) spherical and stable AgNPs. FT-IR and phytochemical analysis suggested that the proteins act as reducing and also as capping agent. A hypothetical approach using bioinformatics tools revealed that the Phytochrome B protein of S. isoetifolium might be responsible for the biosynthesis of NPs. Furthermore, biosynthesized AgNPs showed magnificent antibacterial activity against thirteen clinical bacterial pathogens with maximum zone of inhibition of 14.3±0.12mm due to their smaller size and longer stability even at minimal nanomolar (nM) concentration. In addition, the MIC and MBC values also suggested the same. Moreover, the percentage of haemolysis (8.49±3.10 to 73.34±1.79%) and haemolytic index revealed the satisfactory biocompatibility of AgNPs that showed less/no haemolysis up to 3nM concentration. Further, the toxicity effect of biosynthesized AgNPs against the brine shrimp, Artemia salina exhibited significantly increasing mortality (13±4.7 to 100%) with LC50 value at 4nM concentration. Thus, the optical property, crystal structure, size, shape, stability, bactericidal activity, cytotoxicity, and biocompatibility apparently proved that the biologically synthesized AgNPs have typical properties of nanomaterials.


Asunto(s)
Alismatales , Nanopartículas del Metal/química , Extractos Vegetales/síntesis química , Proteínas de Plantas/síntesis química , Plantas Medicinales , Plata/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Relación Dosis-Respuesta a Droga , Hemólisis/efectos de los fármacos , Hemólisis/fisiología , Hemolíticos/farmacología , Humanos , Nanopartículas del Metal/administración & dosificación , Extractos Vegetales/farmacología , Proteínas de Plantas/farmacología , Estructura Secundaria de Proteína , Plata/farmacología , Difracción de Rayos X
5.
Bioresour Technol ; 218: 934-43, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27450124

RESUMEN

The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters.


Asunto(s)
Biomasa , Chlorella/crecimiento & desarrollo , Modelos Teóricos , Procesos Heterotróficos , Cinética , Gotas Lipídicas/química , Microalgas/crecimiento & desarrollo
6.
Can J Microbiol ; 60(10): 661-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25302530

RESUMEN

The bacterial bioluminescence assay is one of the novel means for toxicity detection. The bioluminescence response of 2 marine bioluminescent bacteria was tested upon their long-term exposure to 9 different reverse osmosis (RO) rejects with varying chemical composition sampled from various dye industries. Bioluminescent bacteria were cultured in the RO reject samples, at different concentrations, and their growth rate and luminescence was measured for 24 h. The RO reject samples caused sublethal effects upon exposure and retarded the growth of bacteria, confirming their toxic nature. Further, continuation of the exposure showed that the initial luminescence, though reduced, recovered and increased beyond the control cultures irrespective of cell density, and finally decreased once again. The present study emphasizes the need of evolving a long-term exposure assay and shows that the method followed in this study is suitable to evaluate the toxicants that exert delayed toxicity, using lower concentrations of toxicants as well as coloured samples.


Asunto(s)
Bacterias/efectos de los fármacos , Residuos Industriales , Contaminantes Químicos del Agua/toxicidad , Filtración , Mediciones Luminiscentes/normas , Ósmosis , Tiempo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/normas
7.
Environ Monit Assess ; 186(10): 5989-6002, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24859909

RESUMEN

Coral reef fishes are exploited without the knowledge of their sustainability and their possible effect in altering the community structure of a coral reef ecosystem. Alteration of the community structure could cause a decline in the health of coral reefs and its services. We documented the coral community structure, status of live corals and reef fish assemblages in Palk Bay at the reef fishing hotspots and its nearby reef area with minimum fishing pressure and compared it with a control reef area where reef fishing was banned for more than two decades. The comparison was based on the percent cover of different forms of live corals, their diversity and the density and diversity of reef fishes. The reef fish stock in the reef fishing hotspots and its neighbouring reef was lower by 61 and 38%, respectively compared to the control reef. The herbivore fish Scarus ghobban and Siganus javus were exploited at a rate of 250 and 105 kg month(-1) fishermen(-1), respectively, relatively high comparing the small reef area. Live and dead corals colonized by turf algae were predominant in both the reef fishing hotspots and its nearby coral ecosystems. The percent cover of healthy live corals and live corals colonized by turf algae was <10 and >80%, respectively, in the intensively fished coral ecosystems. The corals were less diverse and the massive Porites and Favia colonies were abundant in the intensive reef fishing sites. Results of this study suggest that the impact of reef fish exploitation was not solely restricted to the intensively fished reefs, but also to the nearby reefs which play a critical role in the resilience of degraded reef ecosystems.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Peces/fisiología , Herbivoria , Microalgas/crecimiento & desarrollo , Animales , Bahías/química , Monitoreo del Ambiente , Explotaciones Pesqueras/estadística & datos numéricos , India
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA