Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cancer Res Ther ; 19(2): 169-176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313898

RESUMEN

Context: Rotation corrected set-up margins in stereotactic radiotherapy (SRT). Aims: This study aimed to calculate the rotational positional error corrected set-up margin in frameless SRT. Settings and Design: 6D setup errors for the steriotactic radiotherapy patients were converted to 3D translational only error mathematically. Setup margins were calculated with and without considering the rotational error and compared. Materials and Methods: A total of 79 patients of SRT each received >1 fraction (3-6 fractions) incorporated in this study. Two cone-beam computed tomography (CBCT) scans were acquired for each session of treatment, before and after the robotic couch-aided patient position correction using a CBCT. The postpositional correction set-up margin was calculated using the van Herk formula. Further, a planning target volume_R (PTV_R) (with rotational correction) and PTV_NR (without rotational correction) were calculated by applying the rotation corrected and uncorrected set-up margins on the gross tumor volumes (GTVs). Statistical Analysis Used: General. Results: A total of 380 sessions of pre- (190) and post (190) table positional correction CBCT was analyzed. Posttable position correction mean positional error for lateral, longitudinal, and vertical translational and rotational shifts was (x)-0.01 ± 0.05 cm, (y)-0.02 ± 0.05 cm, (z) 0.00 ± 0.05 cm, and (θ) 0.04° ± 0.3°, (Φ) 0.1° ± 0.4°, (Ψ) 0.0° ± 0.4°, respectively. The GTV volumes show a range of 0.13 cc-39.56 cc, with a mean volume of 6.35 ± 8.65 cc. Rotational correction incorporated postpositional correction set-up margin the in lateral (x), longitudinal (y) and vertical (z) directions were 0.05 cm, 0.12 cm, and 0.1 cm, respectively. PTV_R ranges from 0.27 cc to 44.7 cc, with a mean volume of 7.7 ± 9.8 cc. PTV_NR ranges from 0.32 cc to 46.0 cc, with a mean volume of 8.1 ± 10.1 cc. Conclusions: The postcorrection linear set-up margin matches well with the conventional set-up margin of 1 mm. Beyond a GTV radius of 2 cm, the difference between PTV_NR and PTV_R is ≤2.5%, hence not significant.


Asunto(s)
Oncología por Radiación , Radiocirugia , Humanos , Tomografía Computarizada de Haz Cónico , Postura
2.
J Med Phys ; 44(4): 231-238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31908381

RESUMEN

OBJECTIVE: This study demonstrates a novel electronic portal imaging device (EPID)-based forward dosimetry approach for pretreatment quality assurance aided by a treatment planning system (TPS). MATERIALS AND METHODS: Dynamic multileaf collimator intensity-modulated radiation therapy (IMRT) plans were delivered in EPID and fluence was captured on a beam-by-beam basis (FEPID). An open field having dimensions equal to those of the largest IMRT field was used in the TPS to obtain the transmitted fluence. This represented the patient-specific heterogeneity correction (Fhet). To obtain the resultant heterogeneity-corrected fluence, EPID measured fluence was corrected for the TPS generated heterogeneity (FResultant = FEPID × Fhet). Next, the calculated fluence per beam basis was collected from TPS (FTPS). Finally, FResultant and FTPS were compared using a 3% percentage dose difference (% DD)-3 mm distance to agreement [DTA] gamma analysis in an isocentric plane (two-dimensional [2D]) and multiple planes (quasi three-dimensional [3D]) orthogonal to the beam axis. RESULTS: The 2D heterogeneity-corrected dose reconstruction revealed a mean γ passing of the pelvis, thorax, and head-and-neck cases of 96.3% ±2.0%, 96.3% ±1.8%, and 96.1% ±2.2%, respectively. Quasi-3D γ passing for the pelvis, thorax, and head-and-neck cases were 97.5% ±1.4%, 96.3% ±2.4%, and 97.5% ±1.0%, respectively. CONCLUSION: EPID dosimetry produced an inferior result due to no heterogeneity corrections for sites such as the lung and esophagus. Incorporating TPS-based heterogeneity correction improved the EPID dosimetry result for those sites with large heterogeneity.

3.
J Med Phys ; 43(2): 100-105, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962687

RESUMEN

Water is treated as radiological equivalent to human tissue. While this seems justified, there is neither mathematical proof nor sufficient experimental evidence that a water phantom can be treated as equivalent to human tissue. The aim of this work is to simulate and validate a water phantom that is tissue equivalent in terms of the dosimetric characteristics of both water and human tissue Dynamic, intensity-modulated radiotherapy plans for two head and neck, one brain, one pelvis, and three lung/mediastinum cases were chosen for this study. Using a treatment planning system (TPS) (Eclipse, Varian Medical System, Polo Alto, CA, USA) and Anisotropic Analytic Algorithm in a grid resolution of 5 mm × 5 mm, a patient-equivalent water phantom was calculated from all rays in the isocentric plane as an array of water equivalent depths (dWE). These rays were plotted versus isocentric separation and ray-tracing direction. Planar doses were compared between the isocentric plane in the patient computed tomography and the water equivalent phantom using gamma criteria of 2%-2 mm and 3%-3 mm. Except in one lung case, >95% gamma agreement was seen when using 3%-3 mm and >90% pass rate was seen when using 2%-2 mm. For head and neck cases, gamma-fail was restricted to the periphery. For mediastinum cases, gamma-fail was restricted to the lungs. This study demonstrates that a heterogeneous patient can be converted to a water phantom with comparable dosimetric characteristics and disagreements restricted to the lung area for both modulated and open beams. Potential sources of error include the dWE calculation and TPS dose computation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...