Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4175, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755132

RESUMEN

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Análisis de la Célula Individual , Tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Análisis de la Célula Individual/métodos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Microfluídica/métodos , Fenotipo , Descubrimiento de Drogas/métodos , Sinergismo Farmacológico
2.
Sci Rep ; 12(1): 19578, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379978

RESUMEN

Preclinical analysis of drug efficacy is critical for drug development. However, conventional bulk-cell assays statically assess the mean population behavior, lacking resolution on drug-escaping cells. Inaccurate estimation of efficacy can lead to overestimation of compounds, whose efficacy will not be confirmed in the clinic, or lead to rejection of valuable candidates. Time-lapse microfluidic microscopy is a powerful approach to characterize drugs at high spatiotemporal resolution, but hard to apply on a large scale. Here we report the development of a microfluidic platform based on a pneumatic operating principle, which is scalable and compatible with long-term live-cell imaging and with simultaneous analysis of different drug concentrations. We tested the platform with mycobacterial cells, including the tubercular pathogen, providing the first proof of concept of a single-cell dose-response assay. This dynamic in-vitro model will prove useful to probe the fate of drug-stressed cells, providing improved predictions of drug efficacy in the clinic.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas Analíticas Microfluídicas/métodos
3.
iScience ; 25(5): 104233, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35521527

RESUMEN

RNA turnover is a primary source of gene expression variation, in turn promoting cellular adaptation. Mycobacteria leverage reversible mRNA stabilization to endure hostile conditions. Although RNase E is essential for RNA turnover in several species, its role in mycobacterial single-cell physiology and functional phenotypic diversification remains unexplored. Here, by integrating live-single-cell and quantitative-mass-spectrometry approaches, we show that RNase E forms dynamic foci, which are associated with cellular homeostasis and fate, and we discover a versatile molecular interactome. We show a likely interaction between RNase E and the nucleoid-associated protein HupB, which is particularly pronounced during drug treatment and infection, where phenotypic diversity increases. Disruption of RNase E expression affects HupB levels, impairing Mycobacterium tuberculosis growth homeostasis during treatment, intracellular replication, and host spread. Our work lays the foundation for targeting the RNase E and its partner HupB, aiming to undermine M. tuberculosis cellular balance, diversification capacity, and persistence.

4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599102

RESUMEN

Listeriolysin S (LLS) is a thiazole/oxazole-modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.


Asunto(s)
Bacteriocinas/metabolismo , Membrana Celular/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/metabolismo , Adenosina Trifosfato/metabolismo , Citoplasma/metabolismo
5.
ACS Chem Biol ; 16(11): 2158-2163, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34699722

RESUMEN

Fragment-based lead discovery has emerged over the last decades as one of the most powerful techniques for identifying starting chemical matter to target specific proteins or nucleic acids in vitro. However, the use of such low-molecular-weight fragment molecules in cell-based phenotypic assays has been historically avoided because of concerns that bioassays would be insufficiently sensitive to detect the limited potency expected for such small molecules and that the high concentrations required would likely implicate undesirable artifacts. Herein, we applied phenotype cell-based screens using a curated fragment library to identify inhibitors against a range of pathogens including Leishmania, Plasmodium falciparum, Neisseria, Mycobacterium, and flaviviruses. This proof-of-concept shows that fragment-based phenotypic lead discovery (FPLD) can serve as a promising complementary approach for tackling infectious diseases and other drug-discovery programs.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Relación Estructura-Actividad
6.
Methods Mol Biol ; 2314: 205-229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34235654

RESUMEN

Studies on cell-to-cell phenotypic variation in microbial populations, with individuals sharing the same genetic background, provide insights not only on bacterial behavior but also on the adaptive spectrum of the population. Phenotypic variation is an innate property of microbial populations, and this can be further amplified under stressful conditions, providing a fitness advantage. Furthermore, phenotypic variation may also precede a latter step of genetic-based diversification, resulting in the transmission of the most beneficial phenotype to the progeny. While population-wide studies provide a measure of the collective average behavior, single-cell studies, which have expanded over the last decade, delve into the behavior of smaller subpopulations that would otherwise remain concealed. In this chapter, we describe approaches to carry out spatiotemporal analysis of individual mycobacterial cells using time-lapse microscopy. Our method encompasses the fabrication of a microfluidic device; the assembly of a microfluidic system suitable for long-term imaging of mycobacteria; and the quantitative analysis of single-cell behavior under varying growth conditions. Phenotypic variation is conceivably associated to the resilience and endurance of mycobacterial cells. Therefore, shedding light on the dynamics of this phenomenon, on the transience or stability of the given phenotype, on its molecular bases and its functional consequences, offers new scope for intervention.


Asunto(s)
Microfluídica/métodos , Mycobacterium/crecimiento & desarrollo , Fenotipo , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Humanos , Microfluídica/instrumentación , Mycobacterium/genética , Mycobacterium/metabolismo , Análisis Espacio-Temporal
7.
ACS Infect Dis ; 6(11): 3015-3025, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32930569

RESUMEN

Screening of a diversity-oriented compound library led to the identification of two 6,11-dioxobenzo[f]pyrido[1,2-a]indoles (DBPI) that displayed low micromolar bactericidal activity against the Erdman strain of Mycobacterium tuberculosis in vitro. The activity of these hit compounds was limited to tubercle bacilli, including the nonreplicating form, and to Mycobacterium marinum. On hit expansion and investigation of the structure activity relationship, selected modifications to the dioxo moiety of the DBPI scaffold were either neutral or led to reduction or abolition of antimycobacterial activity. To find the target, DBPI-resistant mutants of M. tuberculosis Erdman were raised and characterized first microbiologically and then by whole genome sequencing. Four different mutations, all affecting highly conserved residues, were uncovered in the essential gene rv0338c (ispQ) that encodes a membrane-bound protein, named IspQ, with 2Fe-2S and 4Fe-4S centers and putative iron-sulfur-binding reductase activity. With the help of a structural model, two of the mutations were localized close to the 2Fe-2S domain in IspQ and another in transmembrane segment 3. The mutant genes were recessive to the wild type in complementation experiments and further confirmation of the hit-target relationship was obtained using a conditional knockdown mutant of rv0338c in M. tuberculosis H37Rv. More mechanistic insight was obtained from transcriptome analysis, following exposure of M. tuberculosis to two different DBPI; this revealed strong upregulation of the redox-sensitive SigK regulon and genes induced by oxidative and thiol-stress. The findings of this investigation pharmacologically validate a novel target in tubercle bacilli and open a new vista for tuberculosis drug discovery.


Asunto(s)
Proteínas Hierro-Azufre , Mycobacterium tuberculosis , Tuberculosis , Humanos , Indoles , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción
8.
Microbiol Insights ; 13: 1178636120945304, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32782432

RESUMEN

The lengthy tuberculosis therapy is emblematic of how hard drug-persistent infections are to eradicate. Phenotypic variation within clonal bacterial communities contributes to drug evasion and has major implications for the treatment of drug-persistent infections. We reported that single mycobacterial cells exhibit differential drug susceptibility, contingent on their inherent phenotypic variation in DNA damage response. Individual cells experiencing severe DNA damage massively induce the SOS response and exhibit signs of programmed cell death (PCD), such as unbalanced growth, chromosomal fragmentation, autolysis, and release of the intracellular content. Toxin-antitoxin systems are known to contribute to PCD in model microorganisms by targeting essential cellular processes, and they might function similarly in mycobacteria. We have found that the toxin MazF and a Clp protease, possibly responsible for degrading the MazF cognate antitoxin MazE, are induced during harsh conditions in a model organism for tuberculosis, and that cells that are about to lyse from drug exposure display a buildup of toxin. Deeper analysis of PCD in mycobacteria may reveal whether this process belongs to a broader strategy for the community's survival. Finally, disrupting the balance between survival and PCD may prove useful to tackle drug evasion in mycobacterial persistent subpopulations.

9.
Front Microbiol ; 11: 562, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318042

RESUMEN

There is an urgent need for new antimicrobials to treat the opportunistic Gram-negative Burkholderia cenocepacia, which represents a problematic challenge for cystic fibrosis patients. Recently, a benzothiadiazole derivative, C109, was shown to be effective against the infections caused by B. cenocepacia and other Gram-negative and-positive bacteria. C109 has a promising cellular target, the cell division protein FtsZ, and a recently developed PEGylated formulation make it an attractive molecule to counteract Burkholderia infections. However, the ability of efflux pumps to extrude it out of the cell represents a limitation for its use. Here, more than 50 derivatives of C109 were synthesized and tested against Gram-negative species and the Gram-positive Staphylococcus aureus. In addition, their activity was evaluated on the purified FtsZ protein. The chemical, metabolic and cellular stability of C109 has been assayed using different biological systems, including quantitative single-cell imaging. However, no further improvement on C109 was achieved, and the role of efflux in resistance was further confirmed. Also, a novel nitroreductase that can inactivate the compound was characterized, but it does not appear to play a role in natural resistance. All these data allowed a deep characterization of the compound, which will contribute to a further improvement of its properties.

10.
EMBO J ; 38(22): e101876, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31583725

RESUMEN

Clonal microbial populations are inherently heterogeneous, and this diversification is often considered as an adaptation strategy. In clinical infections, phenotypic diversity is found to be associated with drug tolerance, which in turn could evolve into genetic resistance. Mycobacterium tuberculosis, which ranks among the top ten causes of mortality with high incidence of drug-resistant infections, exhibits considerable phenotypic diversity. In this study, we quantitatively analyze the cellular dynamics of DNA damage responses in mycobacteria using microfluidics and live-cell fluorescence imaging. We show that individual cells growing under optimal conditions experience sporadic DNA-damaging events manifested by RecA expression pulses. Single-cell responses to these events occur as transient pulses of fluorescence expression, which are dependent on the gene-network structure but are triggered by extrinsic signals. We demonstrate that preexisting subpopulations, with discrete levels of DNA damage response, are associated with differential susceptibility to fluoroquinolones. Our findings reveal that the extent of DNA integrity prior to drug exposure impacts the drug activity against mycobacteria, with conceivable therapeutic implications.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ciprofloxacina/farmacología , Daño del ADN/genética , Mycobacterium tuberculosis/genética , Análisis de la Célula Individual , Estrés Fisiológico , Tuberculosis/patología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Daño del ADN/efectos de los fármacos , Humanos , Microfluídica , Mycobacterium tuberculosis/efectos de los fármacos , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
11.
Microbiol Spectr ; 4(6)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27837741

RESUMEN

The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.


Asunto(s)
Mycobacterium tuberculosis/fisiología , Tuberculosis/diagnóstico , Tuberculosis/microbiología , Animales , Antituberculosos/uso terapéutico , Modelos Animales de Enfermedad , Heterogeneidad Genética , Interacciones Huésped-Patógeno , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Fenotipo , Tuberculosis/tratamiento farmacológico
12.
Methods Mol Biol ; 1285: 241-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25779320

RESUMEN

The crucial role of phenotypic heterogeneity in bacterial physiology and adaptive responses has required the introduction of new ways to investigate bacterial individuality. Time-lapse microscopy is a powerful technique for evaluating phenotypic diversity in bacteria at the single-cell level, whether exploring the dynamics of gene expression and protein localization or characterizing the heterogeneous phenotypic response to perturbations. Here, we present protocols to carry out time-lapse imaging of mycobacteria at the single-cell level using either agarose pads or customized microfluidic devices. The sequences of images obtained can be analyzed using programs such as ImageJ and allow the investigator not only to extract various parameters of growth and gene expression dynamics but also to unravel the physiological basis behind phenomenon such as persistence against stresses.


Asunto(s)
Microfluídica/métodos , Microscopía Fluorescente , Mycobacterium/genética , Mycobacterium/metabolismo , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microfluídica/instrumentación , Microscopía Fluorescente/métodos
13.
Cell Host Microbe ; 17(1): 32-46, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25543231

RESUMEN

Nonreplicating and metabolically quiescent bacteria are implicated in latent tuberculosis infections and relapses following "sterilizing" chemotherapy. However, evidence linking bacterial dormancy and persistence in vivo is largely inconclusive. Here we measure the single-cell dynamics of Mycobacterium tuberculosis replication and ribosomal activity using quantitative time-lapse microscopy and a reporter of ribosomal RNA gene expression. Single-cell dynamics exhibit heterogeneity under standard growth conditions, which is amplified by stressful conditions such as nutrient limitation, stationary phase, intracellular replication, and growth in mouse lungs. Additionally, the lungs of chronically infected mice harbor a subpopulation of nongrowing but metabolically active bacteria, which are absent in mice lacking interferon-γ, a cytokine essential for antituberculosis immunity. These cryptic bacterial forms are prominent in mice treated with the antituberculosis drug isoniazid, suggesting a role in postchemotherapeutic relapses. Thus, amplification of bacterial phenotypic heterogeneity in response to host immunity and drug pressure may contribute to tuberculosis persistence.


Asunto(s)
Interacciones Huésped-Patógeno , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/fisiología , Estrés Fisiológico , Tuberculosis/microbiología , Animales , Antituberculosos/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Isoniazida/uso terapéutico , Pulmón/microbiología , Ratones Endogámicos C57BL , Microscopía , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Ribosomas/genética , Análisis de la Célula Individual , Imagen de Lapso de Tiempo , Tuberculosis/tratamiento farmacológico
14.
Appl Microbiol Biotechnol ; 97(20): 8841-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24037308

RESUMEN

The re-emergence of tuberculosis in recent years led the World Health Organization (WHO) to launch the Stop TB Strategy program. Beside repurposing the existing drugs and exploring novel molecular combinations, an essential step to face the burden of tuberculosis will be to develop new drugs by identifying vulnerable bacterial targets. Recent studies have focused on decaprenylphosphoryl-D-ribose oxidase (DprE1) of Mycobacterium tuberculosis, an essential enzyme involved in cell wall metabolism, for which new promising molecules have proved efficacy as antitubercular agents. This review summarizes the state of the art concerning DprE1 in terms of structure, enzymatic activity and inhibitors. This enzyme is emerging as one of the most vulnerable target in M. tuberculosis.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/antagonistas & inhibidores , Tuberculosis/tratamiento farmacológico , Oxidorreductasas de Alcohol , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/genética , Pared Celular/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Tuberculosis/microbiología
15.
Curr Top Microbiol Immunol ; 374: 135-61, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23793585

RESUMEN

A long-standing and fundamental problem in microbiology is the non-trivial discrimination between live and dead cells. The existence of physically intact and possibly viable bacterial cells that fail to replicate during a more or less protracted period of observation, despite environmental conditions that are ostensibly propitious for growth, has been extensively documented in many different organisms. In clinical settings, non-culturable cells may contribute to non-apparent infections capable of reactivating after months or years of clinical latency, a phenomenon that has been well documented in the specific case of Mycobacterium tuberculosis. The prevalence of these silent but potentially problematic bacterial reservoirs has been highlighted by classical approaches such as limiting culture dilution till extinction of growing cells, followed by resuscitation of apparently "viable but non-culturable" (VBNC) subpopulations. Although these assays are useful to demonstrate the presence of VBNC cells in a population, they are effectively retrospective and are not well suited to the analysis of non-replicating cells per se. Here, we argue that research on a closely related problem, which we shall refer to as the "non-growing but metabolically active" state, is poised to advance rapidly thanks to the recent development of novel technologies and methods for real-time single-cell analysis. In particular, the combination of fluorescent reporter dyes and strains, microfluidic and microelectromechanical systems, and time-lapse fluorescence microscopy offers tremendous and largely untapped potential for future exploration of the physiology of non-replicating cells.


Asunto(s)
Viabilidad Microbiana , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/ultraestructura , Análisis de la Célula Individual/métodos , Animales , Antituberculosos/farmacología , Medios de Cultivo , Genes Reporteros , Humanos , Proteínas Luminiscentes/metabolismo , Ratones , Técnicas Analíticas Microfluídicas , Mycobacterium tuberculosis/patogenicidad , Recurrencia , Imagen de Lapso de Tiempo/métodos , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Grabación en Video
16.
Mol Microbiol ; 77(5): 1172-85, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20624223

RESUMEN

Tuberculosis is still a leading cause of death in developing countries, for which there is an urgent need for new pharmacological agents. The synthesis of the novel antimycobacterial drug class of benzothiazinones (BTZs) and the identification of their cellular target as DprE1 (Rv3790), a component of the decaprenylphosphoryl-ß-d-ribose 2'-epimerase complex, have been reported recently. Here, we describe the identification and characterization of a novel resistance mechanism to BTZ in Mycobacterium smegmatis. The overexpression of the nitroreductase NfnB leads to the inactivation of the drug by reduction of a critical nitro-group to an amino-group. The direct involvement of NfnB in the inactivation of the lead compound BTZ043 was demonstrated by enzymology, microbiological assays and gene knockout experiments. We also report the crystal structure of NfnB in complex with the essential cofactor flavin mononucleotide, and show that a common amino acid stretch between NfnB and DprE1 is likely to be essential for the interaction with BTZ. We performed docking analysis of NfnB-BTZ in order to understand their interaction and the mechanism of nitroreduction. Although Mycobacterium tuberculosis seems to lack nitroreductases able to inactivate these drugs, our findings are valuable for the design of new BTZ molecules, which may be more effective in vivo.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Nitrorreductasas/química , Nitrorreductasas/metabolismo , Tiazinas/farmacología , Antituberculosos/metabolismo , Cristalografía por Rayos X , Técnicas de Inactivación de Genes , Pruebas de Sensibilidad Microbiana , Nitrorreductasas/genética , Oxidación-Reducción , Estructura Terciaria de Proteína , Tiazinas/metabolismo
17.
Science ; 324(5928): 801-4, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19299584

RESUMEN

New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.


Asunto(s)
Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Polisacáridos/biosíntesis , Racemasas y Epimerasas/antagonistas & inhibidores , Compuestos de Espiro/farmacología , Compuestos de Espiro/uso terapéutico , Tiazinas/farmacología , Tiazinas/uso terapéutico , Tuberculosis/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Antituberculosos/síntesis química , Antituberculosos/química , Arabinosa/metabolismo , Pared Celular/metabolismo , Farmacorresistencia Bacteriana , Inhibidores Enzimáticos/líquido cefalorraquídeo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Etambutol/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Estructura Molecular , Mycobacterium/efectos de los fármacos , Mycobacterium/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Racemasas y Epimerasas/metabolismo , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Tiazinas/síntesis química , Tiazinas/química , Tuberculosis/microbiología
18.
Tuberculosis (Edinb) ; 89(1): 84-90, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18851927

RESUMEN

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. Moreover, the recent isolation of M. tuberculosis strains resistant to both first- and second-line antitubercular drugs (XDR-TB) threatens to make the treatment of this disease extremely difficult and becoming a threat to public health worldwide. Recently, it has been shown that azoles are potent inhibitors of mycobacterial cell growth and have antitubercular activity in mice, thus favoring the hypothesis that these drugs may constitute a novel strategy against tuberculosis disease. To investigate the mechanisms of resistance to azoles in mycobacteria, we isolated and characterized several spontaneous azoles resistant mutants from M. tuberculosis and Mycobacterium bovis BCG. All the analyzed resistant mutants exhibited both increased econazole efflux and increased transcription of mmpS5-mmpL5 genes, encoding a hypothetical efflux system belonging to the resistance-nodulation-division (RND) family of transporters. We found that the up-regulation of mmpS5-mmpL5 genes was linked to mutations either in the Rv0678 gene, hypothesized to be involved in the transcriptional regulation of this efflux system, or in its putative promoter/operator region.


Asunto(s)
Antifúngicos/uso terapéutico , Azoles/uso terapéutico , Proteínas de Transporte de Membrana/genética , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Antifúngicos/metabolismo , Antifúngicos/farmacología , Azoles/metabolismo , Azoles/farmacología , Secuencia de Bases , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Pared Celular/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Econazol/metabolismo , Econazol/farmacología , Econazol/uso terapéutico , Expresión Génica , Perfilación de la Expresión Génica/métodos , Genes Bacterianos , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Mycobacterium bovis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Tuberculosis/tratamiento farmacológico , Desacopladores/farmacología
19.
Antimicrob Agents Chemother ; 50(12): 4044-52, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17043130

RESUMEN

The lfrA gene of Mycobacterium smegmatis encodes an efflux pump which mediates resistance to different fluoroquinolones, cationic dyes, and anthracyclines. The deletion of the lfrR gene, coding for a putative repressor and localized upstream of lfrA, increased the lfrA expression. In this study, reverse transcription-PCR experiments showed that the two genes are organized as an operon, and lacZ reporter fusions were used to identify the lfrRA promoter region. The lfrRA promoter assignment was verified by mapping the transcription start site by primer extension. Furthermore, we found that some substrates of the multidrug transporter LfrA, e.g., acriflavine, ethidium bromide, and rhodamine 123, enhance lfrA expression at a detectable level of transcription. LfrR protein was purified from Escherichia coli as a fusion protein with a hexahistidine tag and found to bind specifically to a fragment 143 bp upstream of lfrR by gel shift analysis. Furthermore, acriflavine was able to cause the dissociation of the LfrR from the promoter, thus suggesting that this molecule interacts directly with LfrR, inducing lfrA expression. These results suggest that the LfrR repressor is able to bind to different compounds, which allows induction of LfrA multidrug efflux pump expression in response to these ones. Together, all data suggest that the LfrA pump is tightly regulated and that the repression and induction can be switched about a critical substrate concentration which is toxic for the cell.


Asunto(s)
Antiportadores/fisiología , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Mycobacterium smegmatis/metabolismo , Proteínas Represoras/genética , Antiportadores/genética , Proteínas Bacterianas/genética , Operón Lac , Mycobacterium smegmatis/genética , Proteínas Represoras/aislamiento & purificación , Proteínas Represoras/metabolismo
20.
BMC Microbiol ; 6: 66, 2006 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-16857052

RESUMEN

BACKGROUND: Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As Resistance-Nodulation-Division (RND) efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance. RESULTS: Genome analysis and homology searches revealed 14 open reading frames encoding putative drug efflux pumps belonging to RND family in B. cenocepacia J2315 strain. By reverse transcription (RT)-PCR analysis, it was found that orf3, orf9, orf11, and orf13 were expressed at detectable levels, while orf10 appeared to be weakly expressed in B. cenocepacia. Futhermore, orf3 was strongly induced by chloramphenicol. The orf2 conferred resistance to fluoroquinolones, tetraphenylphosphonium, streptomycin, and ethidium bromide when cloned and expressed in Escherichia coli KAM3, a strain lacking the multidrug efflux pump AcrAB. The orf2-overexpressing E. coli also accumulate low concentrations of ethidium bromide, which was restored to wild type level in the presence of CCCP, an energy uncoupler altering the energy of the drug efflux pump. CONCLUSION: The 14 RND pumps gene we have identified in the genome of B. cenocepacia suggest that active efflux could be a major mechanism underlying antimicrobial resistance in this microorganism. We have characterized the ORF2 pump, one of these 14 potential RND efflux systems. Its overexpression in E. coli conferred resistance to several antibiotics and to ethidium bromide but it remains to be determined if this pump play a significant role in the antimicrobial intrinsic resistance of B. cenocepacia. The characterization of antibiotic efflux pumps in B. cenocepacia is an obligatory step prior to the design of specific, potent bacterial inhibitors for the improved control of infectious diseases. Consequently, the topic deserves to be further investigated and future studies will involve systematic investigation on the function and expression of each of the RND efflux pump homologs.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Complejo Burkholderia cepacia/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano , Fijación del Nitrógeno/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Complejo Burkholderia cepacia/genética , Complejo Burkholderia cepacia/crecimiento & desarrollo , Medios de Cultivo , Escherichia coli/genética , Escherichia coli/metabolismo , Etidio/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...