Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 88(7): 076110, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28764516

RESUMEN

A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K < T < 760 K. The sample stage incorporates a removable platen and copper block with inserted cartridge heater and two thermocouple sensors. It is supported and thermally coupled to a cold finger with two sapphire bars. The sapphire based thermal coupling enables the system to perform at higher temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

2.
Sci Rep ; 5: 9142, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25771919

RESUMEN

Palladium doped iron rhodium is a magnetic material of significant interest for it's close to room temperature magnetostructural phase transition from antiferromagnetic (AF) to ferromagnetic (FM) ordering. Here we report on the peculiarities of the magnetization distribution in thin films of FeRh(Pd) probed by Polarized Neutron Reflectometry. Remarkably, we've found thin interfacial regions with strong magnetization that have unique thermomagnetic properties as compared to the rest of the system. These regions exist at the top and bottom interfaces of the films while the central regions behave similarly to the bulk with a clear AF-FM order transition. Further we explore the impact of an additional Pt interlayer introduced in the middle of the FeRh(Pd) film and reveal that it serves to replicate the strong interfacial magnetization found at the top and bottom interfaces. These results are of great value both in understanding the fundamental physics of such an order transition, and in considering FeRh(Pd) for magnetic media and spintronics applications.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 1): 031403, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18517377

RESUMEN

Using small-angle neutron scattering (SANS), we have investigated the orientational order of iron nanoparticles dispersed in cyclohexanone. The particles have rodlike shape and size distributions with an average length of 200 nm and an average diameter of 25 nm. SANS shows an anisotropy, which is a measure of orientational order, in magnetic dispersions with a volume fraction of 3.2% and 3.9% iron particles in shear flow and/or magnetic field. The scattering anisotropy can be fitted by a model assuming an Onsager distribution of the orientation of the particles in shear flow. The orientational distribution of particles oriented by a magnetic field can be described by a different model assuming the Maier-Saupe orientational distribution for uniaxial ferromagnetic particles. The orientational distribution parameter m for the Maier-Saupe distribution or alpha for the Onsager distribution and the orientational order parameter S have been determined at shear rates gamma[over ] of to 0-4000 s(-1) and in magnetic fields of 0-18 mT. The S values indicate that the particles start to orient either in a shear flow of 100 s(-1) or in a magnetic field of 6 mT. Applying only shear results in an orientational order, with the dispersion returning to the disordered state when the shear rate is decreased to zero. In sharp contrast, application of magnetic fields greater than 6 mT results in orientational order in the field-increasing cycle, and two-thirds of the orientational order remains when the field is decreased to zero. This shows that the order in a magnetic field is different from the order in a shear flow, the action of magnetizing the particles along a certain direction is irreversible, and the orientational order parameter exhibits hysteresis.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(5 Pt 1): 051406, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12786151

RESUMEN

Small-angle neutron scattering experiments have been performed to investigate orientational ordering of a dispersion of rod-shaped ferromagnetic nanoparticles under the influence of shear flow and static magnetic field. In this experiment, the flow and flow gradient directions are perpendicular to the direction of the applied magnetic field. The scattering intensity is isotropic in zero-shear-rate or zero-applied-field conditions, indicating that the particles are randomly oriented. Anisotropic scattering is observed both in a shear flow and in a static magnetic field, showing that both flow and field induce orientational order in the dispersion. The anisotropy increases with the increase of field and with the increase of shear rate. Three states of order have been observed with the application of both shear flow and magnetic field. At low shear rates, the particles are aligned in the field direction. When increasing shear rate is applied, the particles revert to random orientations at a characteristic shear rate that depends on the strength of the applied magnetic field. Above the characteristic shear rate, the particles align along the flow direction. The experimental results agree qualitatively with the predictions of a mean field model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA