Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
EJNMMI Res ; 14(1): 32, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536511

RESUMEN

BACKGROUND: Standard measures of response such as Response Evaluation Criteria in Solid Tumors are ineffective for bone lesions, often making breast cancer patients that have bone-dominant metastases ineligible for clinical trials with potentially helpful therapies. In this study we prospectively evaluated the test-retest uptake variability of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) in a cohort of breast cancer patients with bone-dominant metastases to determine response criteria. The thresholds for 95% specificity of change versus no-change were then applied to a second cohort of breast cancer patients with bone-dominant metastases. METHODS: For this study, nine patients with 38 bone lesions were imaged with 18F-FDG in the same calibrated scanner twice within 14 days. Tumor uptake was quantified by the most commonly used PET parameter, the maximum tumor voxel normalized by dose and body weight (SUVmax) and also by the mean of a 1-cc maximal uptake volume normalized by dose and lean-body-mass (SULpeak). The asymmetric repeatability coefficients with confidence intervals for SUVmax and SULpeak were used to determine the limits of 18F-FDG uptake variability. A second cohort of 28 breast cancer patients with bone-dominant metastases that had 146 metastatic bone lesions was imaged with 18F-FDG before and after standard-of-care therapy for response assessment. RESULTS: The mean relative difference of SUVmax and SULpeak in 38 bone tumors of the first cohort were 4.3% and 6.7%. The upper and lower asymmetric limits of the repeatability coefficient were 19.4% and - 16.3% for SUVmax, and 21.2% and - 17.5% for SULpeak. 18F-FDG repeatability coefficient confidence intervals resulted in the following patient stratification using SULpeak for the second patient cohort: 11-progressive disease, 5-stable disease, 7-partial response, and 1-complete response with three inevaluable patients. The asymmetric repeatability coefficients response criteria for SULpeak changed the status of 3 patients compared to the standard Positron Emission Tomography Response Criteria in Solid Tumors of ± 30% SULpeak. CONCLUSION: In evaluating bone tumor response for breast cancer patients with bone-dominant metastases using 18F-FDG SUVmax, the repeatability coefficients from test-retest studies show that reductions of more than 17% and increases of more than 20% are unlikely to be due to measurement variability. Serial 18F-FDG imaging in clinical trials investigating bone lesions in these patients, such as the ECOG-ACRIN EA1183 trial, benefit from confidence limits that allow interpretation of response.

2.
Res Sq ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38313279

RESUMEN

BACKGROUND: Standard measures of response such as Response Evaluation Criteria in Solid Tumors are ineffective for bone lesions, often making breast cancer patients with bone-dominant metastases ineligible for clinical trials with potentially helpful therapies. In this study we prospectively evaluated the test-retest uptake variability of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) in a cohort of breast cancer patients with bone-dominant metastases to determine response criteria. The thresholds for 95% specificity of change versus no-change were then applied to a second cohort of breast cancer patients with bone-dominant metastases.In this study, nine patients with 38 bone lesions were imaged with 18F-FDG in the same calibrated scanner twice within 14 days. Tumor uptake was quantified as the maximum tumor voxel normalized by dose and body weight (SUVmax) and the mean of a 1-cc maximal uptake volume normalized by dose and lean-body-mass (SULpeak). The asymmetric repeatability coefficients with confidence intervals of SUVmax and SULpeak were used to determine limits of 18F-FDG uptake variability. A second cohort of 28 breast cancer patients with bone-dominant metastases that had 146 metastatic bone lesions was imaged with 18F-FDG before and after standard-of-care therapy for response assessment. RESULTS: The mean relative difference of SUVmax in 38 bone tumors of the first cohort was 4.3%. The upper and lower asymmetric limits of the repeatability coefficient were 19.4% and -16.3%, respectively. The 18F-FDG repeatability coefficient confidence intervals resulted in the following patient stratification for the second patient cohort: 11-progressive disease, 5-stable disease, 7-partial response, and 1-complete response with three inevaluable patients. The asymmetric repeatability coefficients response criteria changed the status of 3 patients compared to standard the standard Positron Emission Tomography Response Criteria in Solid Tumors of ±30% SULpeak. CONCLUSIONS: In evaluating bone tumor response for breast cancer patients with bone-dominant metastases using 18F-FDG uptake, the repeatability coefficients from test-retest studies show that reductions of more than 17% and increases of more than 20% are unlikely to be due to measurement variability. Serial 18F-FDG imaging in clinical trials investigating bone lesions from these patients, such as the ECOG-ACRIN EA1183 trial, benefit from confidence limits that allow interpretation of response.

5.
Sci Rep ; 14(1): 53, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167550

RESUMEN

The objective of this study is to define CT imaging derived phenotypes for patients with hepatic steatosis, a common metabolic liver condition, and determine its association with patient data from a medical biobank. There is a need to further characterize hepatic steatosis in lean patients, as its epidemiology may differ from that in overweight patients. A deep learning method determined the spleen-hepatic attenuation difference (SHAD) in Hounsfield Units (HU) on abdominal CT scans as a quantitative measure of hepatic steatosis. The patient cohort was stratified by BMI with a threshold of 25 kg/m2 and hepatic steatosis with threshold SHAD ≥ - 1 HU or liver mean attenuation ≤ 40 HU. Patient characteristics, diagnoses, and laboratory results representing metabolism and liver function were investigated. A phenome-wide association study (PheWAS) was performed for the statistical interaction between SHAD and the binary characteristic LEAN. The cohort contained 8914 patients-lean patients with (N = 278, 3.1%) and without (N = 1867, 20.9%) steatosis, and overweight patients with (N = 1863, 20.9%) and without (N = 4906, 55.0%) steatosis. Among all lean patients, those with steatosis had increased rates of cardiovascular disease (41.7 vs 27.8%), hypertension (86.7 vs 49.8%), and type 2 diabetes mellitus (29.1 vs 15.7%) (all p < 0.0001). Ten phenotypes were significant in the PheWAS, including chronic kidney disease, renal failure, and cardiovascular disease. Hepatic steatosis was found to be associated with cardiovascular, kidney, and metabolic conditions, separate from overweight BMI.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Hígado Graso , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedades Cardiovasculares/complicaciones , Sobrepeso/complicaciones , Sobrepeso/diagnóstico por imagen , Diabetes Mellitus Tipo 2/complicaciones , Hígado Graso/complicaciones , Tomografía Computarizada por Rayos X/métodos , Fenotipo , Enfermedad del Hígado Graso no Alcohólico/complicaciones
6.
J Nucl Med ; 65(2): 221-223, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071554

RESUMEN

The estrogen receptor (ER), a steroid hormone receptor important in female physiology, is a significant contributor to breast carcinogenesis and progression and, as such, is an important therapeutic target. Approximately 70% of breast cancers will express ER at presentation, and the determination of ER expression by tissue assay, usually by immunohistochemistry, is part of the standard of care for newly diagnosed breast cancer. ER expression is important in guiding the approach to treatment, especially with the increase in relevant systemic therapies. The ER-targeting imaging agent 16α-[18F]fluoro-17ß-estradiol ([18F]FES) is approved for clinical use by regulatory agencies in France and the United States. Multiple studies suggest the advantages of [18F]FES PET in assessing tumor ER expression, the ability of both qualitative and quantitative [18F]FES PET measures to predict response to ER-targeted therapy, and the ability of [18F]FES PET to clarify equivocal staging and restaging results in patients with ER-expressing cancers. [18F]FES PET/CT may also be helpful in staging invasive lobular breast cancer and low-grade ER-expressing invasive ductal cancers and, in some cases, may be a substitute for biopsy. The Society of Nuclear Medicine and Molecular Imaging and the European Association of Nuclear Medicine in June 2023 released a procedure standard/practice guideline for [18F]FES PET ER imaging of patients with breast cancer. The goal of the standard/guideline is to assist physicians in recommending, performing, interpreting, and reporting the results of [18F]FES PET studies for patients with breast cancer and to provide clinicians with the best available evidence, inform them about areas where robust evidence is lacking, and help them deliver the best possible diagnostic efficacy and study quality for their patients. Also reviewed are standardized quality control, quality assurance, and imaging procedures for [18F]FES PET. The authors emphasize the importance of precision, accuracy, repeatability, and reproducibility for both clinical management of patients and for use of [18F]FES PET in multicenter trials. A standardized imaging procedure, in combination with already published appropriate-use criteria, will help promote the use of [18F]FES PET and enhance subsequent research. This brief summary article reviews the content of the joint standard/guideline, which is available in its entirety at https://www.snmmi.org/ClinicalPractice/content.aspx?ItemNumber=6414&navItemNumbe=10790.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Receptores de Estrógenos/metabolismo , Reproducibilidad de los Resultados , Estradiol/metabolismo , Tomografía de Emisión de Positrones/métodos
7.
Breast Cancer Res ; 25(1): 138, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946201

RESUMEN

PURPOSE: To investigate combined MRI and 18F-FDG PET for assessing breast tumor metabolism/perfusion mismatch and predicting pathological response and recurrence-free survival (RFS) in women treated for breast cancer. METHODS: Patients undergoing neoadjuvant chemotherapy (NAC) for locally-advanced breast cancer were imaged at three timepoints (pre, mid, and post-NAC), prior to surgery. Imaging included diffusion-weighted and dynamic contrast-enhanced (DCE-) MRI and quantitative 18F-FDG PET. Tumor imaging measures included apparent diffusion coefficient, peak percent enhancement (PE), peak signal enhancement ratio (SER), functional tumor volume, and washout volume on MRI and standardized uptake value (SUVmax), glucose delivery (K1) and FDG metabolic rate (MRFDG) on PET, with percentage changes from baseline calculated at mid- and post-NAC. Associations of imaging measures with pathological response (residual cancer burden [RCB] 0/I vs. II/III) and RFS were evaluated. RESULTS: Thirty-five patients with stage II/III invasive breast cancer were enrolled in the prospective study (median age: 43, range: 31-66 years, RCB 0/I: N = 11/35, 31%). Baseline imaging metrics were not significantly associated with pathologic response or RFS (p > 0.05). Greater mid-treatment decreases in peak PE, along with greater post-treatment decreases in several DCE-MRI and 18F-FDG PET measures were associated with RCB 0/I after NAC (p < 0.05). Additionally, greater mid- and post-treatment decreases in DCE-MRI (peak SER, washout volume) and 18F-FDG PET (K1) were predictive of prolonged RFS. Mid-treatment decreases in metabolism/perfusion ratios (MRFDG/peak PE, MRFDG/peak SER) were associated with improved RFS. CONCLUSION: Mid-treatment changes in both PET and MRI measures were predictive of RCB status and RFS following NAC. Specifically, our results indicate a complementary relationship between DCE-MRI and 18F-FDG PET metrics and potential value of metabolism/perfusion mismatch as a marker of patient outcome.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Adulto , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Fluorodesoxiglucosa F18/uso terapéutico , Terapia Neoadyuvante/métodos , Radiofármacos/uso terapéutico , Estudios Prospectivos , Resultado del Tratamiento , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos
8.
bioRxiv ; 2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38014289

RESUMEN

In triple-negative breast cancer (TNBC) that relies on catabolism of amino acid glutamine, glutaminase (GLS) converts glutamine to glutamate, which facilitates glutathione synthesis by mediating the enrichment of intracellular cystine via xCT antiporter activity. To overcome chemo resistant TNBC, we have tested a strategy of disrupting cellular redox balance by inhibition of GLS and xCT by CB839 and Erastin, respectively. Key findings of our study include: 1. Dual metabolic inhibition (CB839+Erastin) led to significant increases of cellular superoxide level in both parent and chemo resistant TNBC cells, but superoxide level was distinctly lower in resistant cells. 2. Dual metabolic inhibition combined with doxorubicin or cisplatin induced significant apoptosis in TNBC cells and is associated with high degrees of GSH depletion. In vivo , dual metabolic inhibition plus cisplatin led to significant growth delay of chemo resistant human TNBC xenografts. 3. Ferroptosis is induced by doxorubicin (DOX) but not by cisplatin or paclitaxel. Addition of dual metabolic inhibition to DOX chemotherapy significantly enhanced ferroptotic cell death. 4. Significant changes in cellular metabolites concentration preceded transcriptome changes revealed by single cell RNA sequencing, underscoring the potential of capturing early changes in metabolites as pharmacodynamic markers of metabolic inhibitors. Here we demonstrated that 4-(3-[ 18 F]fluoropropyl)-L-glutamic acid ([ 18 F]FSPG) PET detected xCT blockade by Erastin or its analog in mice bearing human TNBC xenografts. In summary, our study provides compelling evidence for the therapeutic benefit and feasibility of non-invasive monitoring of dual metabolic blockade as a translational strategy to sensitize chemo resistant TNBC to cytotoxic chemotherapy.

9.
J Nucl Med ; 64(9): 1329-1330, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37657929
11.
Front Cardiovasc Med ; 10: 1118796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383703

RESUMEN

Introduction: Right ventricular (RV) function is a major determinant of outcome in patients with precapillary pulmonary hypertension (PH). We studied the effect of ranolazine on RV function over 6 months using multi-modality imaging and biochemical markers in patients with precapillary PH (groups I, III, and IV) and RV dysfunction [CMR imaging ejection fraction (EF) < 45%] in a longitudinal, randomized, double-blinded, placebo-controlled, multicenter study of ranolazine treatment. Methods: Enrolled patients were assessed using cardiac magnetic resonance (CMR) imaging, 11C-acetate and 18-F-FDG positron emission tomography (PET), and plasma metabolomic profiling, at baseline and at the end of treatment. Results: Twenty-two patients were enrolled, and 15 patients completed all follow-up studies with 9 in the ranolazine arm and 6 in the placebo arm. RVEF and RV/Left ventricle (LV) mean glucose uptake were significantly improved after 6 months of treatment in the ranolazine arm. Metabolomic changes in aromatic amino acid metabolism, redox homeostasis, and bile acid metabolism were observed after ranolazine treatment, and several changes significantly correlated with changes in PET and CMR-derived fluid dynamic measurements. Discussion: Ranolazine may improve RV function by altering RV metabolism in patients with precapillary PH. Larger studies are needed to confirm the beneficial effects of ranolazine.

12.
J Nucl Med ; 64(3): 351-354, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36863779

RESUMEN

PET imaging with 16α-18F-fluoro-17ß-fluoroestradiol (18F-FES), a radiolabeled form of estradiol, allows whole-body, noninvasive evaluation of estrogen receptor (ER). 18F-FES is approved by the U.S. Food and Drug Administration as a diagnostic agent "for the detection of ER-positive lesions as an adjunct to biopsy in patients with recurrent or metastatic breast cancer." The Society of Nuclear Medicine and Molecular Imaging (SNMMI) convened an expert work group to comprehensively review the published literature for 18F-FES PET in patients with ER-positive breast cancer and to establish appropriate use criteria (AUC). The findings and discussions of the SNMMI 18F-FES work group, including example clinical scenarios, were published in full in 2022 and are available at https://www.snmmi.org/auc Of the clinical scenarios evaluated, the work group concluded that the most appropriate uses of 18F-FES PET are to assess ER functionality when endocrine therapy is considered either at initial diagnosis of metastatic breast cancer or after progression of disease on endocrine therapy, the ER status of lesions that are difficult or dangerous to biopsy, and the ER status of lesions when other tests are inconclusive. These AUC are intended to enable appropriate clinical use of 18F-FES PET, more efficient approval of FES use by payers, and promotion of investigation into areas requiring further research. This summary includes the rationale, methodology, and main findings of the work group and refers the reader to the complete AUC document.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Femenino , Humanos , Biopsia , Neoplasias de la Mama/diagnóstico por imagen , Imagen Molecular , Tomografía de Emisión de Positrones , Estados Unidos , Estradiol/metabolismo
13.
Clin Cancer Res ; 29(11): 2015-2016, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36988617

RESUMEN

[18F]fluoroestradiol (FES) PET is an FDA-approved imaging biomarker. Like IHC, FES positivity predicts clinical benefit of endocrine therapy. In addition, FES measures the target activity in endocrine agent drug development. A recent study found that whole body tumor heterogeneity of expression predicts clinical benefit, and serial FES monitors estrogen receptor blockade and posttreatment release. See related article by Iqbal et al., p. 2075.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18/uso terapéutico , Receptores de Estrógenos/metabolismo , Estradiol/uso terapéutico , Antagonistas de Estrógenos/uso terapéutico , Imagen Molecular , Biomarcadores
14.
Acad Radiol ; 30(4): 631-639, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764883

RESUMEN

Understanding imaging research experiences, challenges, and strategies for academic radiology departments during and after COVID-19 is critical to prepare for future disruptive events. We summarize key insights and programmatic initiatives at major academic hospitals across the world, based on literature review and meetings of the Radiological Society of North America Vice Chairs of Research (RSNA VCR) group. Through expert discussion and case studies, we provide suggested guidelines to maintain and grow radiology research in the postpandemic era.


Asunto(s)
COVID-19 , Radiología , Humanos , Pandemias , Diagnóstico por Imagen , América del Norte/epidemiología
15.
Radiographics ; 43(3): e220143, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36821506

RESUMEN

In the United States, breast cancer is the second leading cause of cancer death in all women and the leading cause of cancer death in Black women. The breast cancer receptor profile, assessed with immunohistochemical staining of tissue samples, allows prediction of outcomes and direction of patient treatment. Approximately 80% of newly diagnosed breast cancers are hormone receptor (HR) positive, which is defined as estrogen receptor (ER) and/or progesterone receptor (PR) positive. Patients with ER-positive disease can be treated with therapies targeting the ER; however, the assessment of ER expression with immunohistochemical staining of biopsy specimens has several limitations including sampling error, false-negative results, challenging or inaccessible biopsy sites, and the inability to synchronously and serially assess all metastatic sites to identify spatial and/or temporal ER heterogeneity. In May 2020, after decades of research, the U.S. Food and Drug Administration approved the PET radiotracer fluorine 18 (18F) fluoroestradiol (FES) for clinical use in patients with ER-positive recurrent or metastatic breast cancer as an adjunct to biopsy. FES binds to the ER in the nucleus of ER-expressing cells, enabling whole-body in vivo assessment of ER expression. This article is focused on the approved uses of FES in the United States, including identification of a target lesion for confirmatory biopsy, in vivo assessment of biopsy-proven ER-positive disease, and evaluation of spatial and temporal ER heterogeneity. FES is an example of precision medicine that has been leveraged to optimize the care of patients with breast cancer. © RSNA, 2023 See the invited commentary by Fowler in this issue. Quiz questions for this article are available through the Online Learning Center.


Asunto(s)
Neoplasias de la Mama , Estradiol , Humanos , Femenino , Neoplasias de la Mama/patología , Receptores de Estrógenos/metabolismo , Biopsia , Tomografía de Emisión de Positrones/métodos
16.
Clin Cancer Res ; 29(8): 1515-1527, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36441795

RESUMEN

PURPOSE: PARP inhibitors have become the standard-of-care treatment for homologous recombination deficient (HRD) high-grade serous ovarian cancer (HGSOC). However, not all HRD tumors respond to PARPi. Biomarkers to predict response are needed. [18F]FluorThanatrace ([18F]FTT) is a PARPi-analog PET radiotracer that noninvasively measures PARP-1 expression. Herein, we evaluate [18F]FTT as a biomarker to predict response to PARPi in patient-derived xenograft (PDX) models and subjects with HRD HGSOC. EXPERIMENTAL DESIGN: In PDX models, [18F]FTT-PET was performed before and after PARPi (olaparib), ataxia-telangiectasia inhibitor (ATRi), or both (PARPi-ATRi). Changes in [18F]FTT were correlated with tumor volume changes. Subjects were imaged with [18F]FTT-PET at baseline and after ∼1 week of PARPi. Changes in [18F]FTT-PET uptake were compared with changes in tumor size (RECISTv1.1), CA-125, and progression-free survival (PFS). RESULTS: A decrease in [18F]FTT tumor uptake after PARPi correlated with response to PARPi, or PARPi-ATRi treatment in PARPi-resistant PDX models (r = 0.77-0.81). In subjects (n = 11), percent difference in [18F]FTT-PET after ∼7 days of PARPi compared with baseline correlated with best RECIST response (P = 0.01), best CA-125 response (P = 0.033), and PFS (P = 0.027). All subjects with >50% reduction in [18F]FTT uptake had >6-month PFS and >50% reduction in CA-125. Utilizing only baseline [18F]FTT uptake did not predict such responses. CONCLUSIONS: The decline in [18F]FTT uptake shortly after PARPi initiation provides a measure of drug-target engagement and shows promise as a biomarker to guide PARPi therapies in this pilot study. These results support additional preclinical mechanistic and clinical studies in subjects receiving PARPi ± combination therapy. See related commentary by Liu and Zamarin, p. 1384.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proyectos Piloto , Antineoplásicos/uso terapéutico , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Biomarcadores , Tomografía de Emisión de Positrones/métodos
17.
J Nucl Med ; 64(1): 131-136, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772960

RESUMEN

Aggressive cancers such as triple-negative breast cancer (TNBC) avidly metabolize glutamine as a feature of their malignant phenotype. The conversion of glutamine to glutamate by the glutaminase enzyme represents the first and rate-limiting step of this pathway and a target for drug development. Indeed, a novel glutaminase inhibitor (GLSi) has been developed and tested in clinical trials but with limited success, suggesting the potential for a biomarker to select patients who could benefit from this novel therapy. Here, we studied a nonmetabolized amino acid analog, 18F-fluciclovine, as a PET imaging biomarker for detecting the pharmacodynamic response to GLSi. Methods: Uptake of 18F-fluciclovine into human breast cancer cells was studied in the presence and absence of inhibitors of glutamine transporters and GLSi. To allow 18F-fluciclovine PET to be performed on mice, citrate in the tracer formulation is replaced by phosphate-buffered saline. Mice bearing triple-negative breast cancer (TNBC) xenografts (HCC38, HCC1806, and MBA-MD-231) and estrogen receptor-positive breast cancer xenografts (MCF-7) were imaged with dynamic PET at baseline and after a 2-d treatment of GLSi (CB839) or vehicle. Kinetic analysis suggested reversible uptake of the tracer, and the distribution volume (VD) of 18F-fluciclovine was estimated by Logan plot analysis. Results: Our data showed that cellular uptake of 18F-fluciclovine is mediated by glutamine transporters. A significant increase in VD was observed after CB839 treatment in TNBC models exhibiting high glutaminase activity (HCC38 and HCC1806) but not in TNBC or MCF-7 exhibiting low glutaminase. Changes in VD were corroborated with changes in GLS activity measured in tumors treated with CB839 versus vehicle, as well as with changes in VD of 18F-(2S,R4)-fluoroglutamine, which we previously validated as a measure of cellular glutamine pool size. A moderate, albeit significant, decrease in 18F-FDG PET signal was observed in HCC1806 tumors after CB839 treatment. Conclusion: 18F-fluciclovine PET has potential to serve as a clinically translatable pharmacodynamic biomarker of GLSi.


Asunto(s)
Ciclobutanos , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/metabolismo , Glutaminasa/metabolismo , Glutamina , Cinética , Tomografía de Emisión de Positrones/métodos , Ácidos Carboxílicos , Biomarcadores
18.
Radiol Imaging Cancer ; 4(6): e220032, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36269154

RESUMEN

Fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/CT has shown promise for use in assessing treatment response in patients with bone-only or bone-dominant (BD) metastatic breast cancer (mBC). In this single-institution, prospective single-arm study of 23 women (median age, 59 years [range, 38-81 years]) with biopsy-proven estrogen receptor-positive bone-only or BD mBC about to begin new endocrine therapy between October 3, 2013, and August 3, 2018, the value of early 4-week 18F-FDG PET/CT in predicting progression-free survival (PFS) was evaluated. 18F-FDG PET/CT was performed at baseline, 4 weeks, and 12 weeks. Maximum standardized uptake value (SUVmax) and peak SUV (SUVpeak) were measured for up to five index lesions. The primary end point was PFS. Secondary end points were overall survival (OS) and time to skeletal-related events (tSREs). All end points were compared between responders (reduction of 30% or more in the sum of SUVmax for target lesions) and nonresponders at 4 weeks and 12 weeks. Percentage change from baseline in SUVmax at 4- and 12-week 18F-FDG PET/CT were highly correlated (r = 0.81). At the 4-week time point PET responders had numerically longer PFS (14.2 months vs 6.3 months; P = .53), OS (44.0 months vs 29.7 months; P = .47), and tSRE (27.4 months vs 25.2 months; P = .66) compared with nonresponders, suggesting the clinical utility of 4-week 18F-FDG PET/CT as an early predictor of treatment failure. Keywords: Breast Cancer, Metastatic Breast Cancer, Bone-Dominant Metastatic Breast Cancer, FDG PET/CT, Estrogen-Receptor Positive Metastatic Breast Cancer Supplemental material is available for this article. Clinical trial registration no. NCT04316117 © RSNA, 2022.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Femenino , Humanos , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/terapia , Neoplasias Óseas/secundario , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Estrógenos/uso terapéutico , Flúor/uso terapéutico , Fluorodesoxiglucosa F18/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos , Receptores de Estrógenos/uso terapéutico , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
19.
J Clin Invest ; 132(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36106638

RESUMEN

BACKGROUNDSeveral molecular imaging strategies can identify bacterial infections in humans. PET affords the potential for sensitive infection detection deep within the body. Among PET-based approaches, antibiotic-based radiotracers, which often target key bacterial-specific enzymes, have considerable promise. One question for antibiotic radiotracers is whether antimicrobial resistance (AMR) reduces specific accumulation within bacteria, diminishing the predictive value of the diagnostic test.METHODSUsing a PET radiotracer based on the antibiotic trimethoprim (TMP), [11C]-TMP, we performed in vitro uptake studies in susceptible and drug-resistant bacterial strains and whole-genome sequencing (WGS) in selected strains to identify TMP resistance mechanisms. Next, we queried the NCBI database of annotated bacterial genomes for WT and resistant dihydrofolate reductase (DHFR) genes. Finally, we initiated a first-in-human protocol of [11C]-TMP in patients infected with both TMP-sensitive and TMP-resistant organisms to demonstrate the clinical feasibility of the tool.RESULTSWe observed robust [11C]-TMP uptake in our panel of TMP-sensitive and -resistant bacteria, noting relatively variable and decreased uptake in a few strains of P. aeruginosa and E. coli. WGS showed that the vast majority of clinically relevant bacteria harbor a WT copy of DHFR, targetable by [11C]-TMP, and that despite the AMR, these strains should be "imageable." Clinical imaging of patients with [11C]-TMP demonstrated focal radiotracer uptake in areas of infectious lesions.CONCLUSIONThis work highlights an approach to imaging bacterial infection in patients, which could affect our understanding of bacterial pathogenesis as well as our ability to better diagnose infections and monitor response to therapy.TRIAL REGISTRATIONClinicalTrials.gov NCT03424525.FUNDINGInstitute for Translational Medicine and Therapeutics, Burroughs Wellcome Fund, NIH Office of the Director Early Independence Award (DP5-OD26386), and University of Pennsylvania NIH T32 Radiology Research Training Grant (5T32EB004311-12).


Asunto(s)
Infecciones Bacterianas , Trimetoprim , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Infecciones Bacterianas/diagnóstico por imagen , Infecciones Bacterianas/tratamiento farmacológico , Radioisótopos de Carbono , Escherichia coli , Humanos , Trimetoprim/farmacología , Trimetoprim/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...