Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 27, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212782

RESUMEN

BACKGROUND: The pro-inflammatory ATP-gated P2X7 receptor is widely expressed by immune and non-immune cells. Nanobodies targeting P2X7, with potentiating or antagonistic effects, have been developed. Adeno-associated virus (AAV)-mediated gene transfer represents an efficient approach to achieve long-term in vivo expression of selected nanobody-based biologics. This approach (AAVnano) was used to validate the relevance of P2X7 as a target in dextran sodium sulfate (DSS)-induced colitis in mice. RESULTS: Mice received an intramuscular injection of AAV vectors coding for potentiating (14D5-dimHLE) or antagonistic (13A7-Fc) nanobody-based biologics targeting P2X7. Long-term modulation of P2X7 activity was evaluated ex vivo from blood samples. Colitis was induced with DSS in mice injected with AAV vectors coding for nanobody-based biologics. Severity of colitis, colon histopathology and expression of chemokines and cytokines were determined to evaluate the impact of P2X7 modulation. A single injection of an AAV vector coding for 13A7-Fc or 14D5-dimHLE efficiently modulated P2X7 function in vivo from day 15 up to day 120 post-injection in a dose-dependent manner. An AAV vector coding for 13A7-Fc significantly ameliorated DSS-induced colitis and significantly reduced immune cell infiltration and expression of chemokines and proinflammatory cytokines in colonic tissue. CONCLUSIONS: We have demonstrated the validity of AAVnano methodology to modulate P2X7 functions in vivo. Applying this methodological approach to a DSS-induced colitis model, we have shown that P2X7 blockade reduces inflammation and disease severity. Hence, this study confirms the importance of P2X7 as a pharmacological target and suggests the use of nanobody-based biologics as potential therapeutics in inflammatory bowel disease.


Asunto(s)
Productos Biológicos , Colitis , Ratones , Animales , Colon/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Citocinas/metabolismo , Quimiocinas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
Front Immunol ; 13: 1005800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405759

RESUMEN

Nanobodies are well suited for constructing biologics due to their high solubility. We generated nanobodies directed against CD38, a tumor marker that is overexpressed by multiple myeloma and other hematological malignancies. We then used these CD38-specific nanobodies to construct heavy chain antibodies, bispecific killer cell engagers (BiKEs), chimeric antigen receptor (CAR)-NK cells, and nanobody-displaying AAV vectors. Here we review the utility of these nanobody-based constructs to specifically and effectively target CD38-expressing myeloma cells. The promising results of our preclinical studies warrant further clinical studies to evaluate the potential of these CD38-specific nanobody-based constructs for treatment of multiple myeloma.


Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Anticuerpos de Dominio Único , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Anticuerpos Biespecíficos/uso terapéutico , ADP-Ribosil Ciclasa 1 , Cadenas Pesadas de Inmunoglobulina/uso terapéutico , Células Asesinas Naturales
3.
Front Immunol ; 13: 1012534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341324

RESUMEN

Adenosine triphosphate (ATP) represents a danger signal that accumulates in injured tissues, in inflammatory sites, and in the tumor microenvironment. ATP promotes tumor growth but also anti-tumor immune responses notably via the P2X7 receptor. ATP can also be catabolized by CD39 and CD73 ecto-enzymes into immunosuppressive adenosine. P2X7, CD39 and CD73 have attracted much interest in cancer as targets offering the potential to unleash anti-tumor immune responses. These membrane proteins represent novel purinergic checkpoints that can be targeted by small drugs or biologics. Here, we investigated nanobody-based biologics targeting mainly P2X7, but also CD73, alone or in combination therapies. Blocking P2X7 inhibited tumor growth and improved survival of mice in cancer models that express P2X7. P2X7-potentiation by a nanobody-based biologic was not effective alone to control tumor growth but enhanced tumor control and immune responses when used in combination with oxaliplatin chemotherapy. We also evaluated a bi-specific nanobody-based biologic that targets PD-L1 and CD73. This novel nanobody-based biologic exerted a potent anti-tumor effect, promoting tumor rejection and improving survival of mice in two tumor models. Hence, this study highlights the importance of purinergic checkpoints in tumor control and open new avenues for nanobody-based biologics that may be further exploited in the treatment of cancer.


Asunto(s)
Neoplasias , Microambiente Tumoral , Ratones , Animales , Adenosina Trifosfato/metabolismo , Adenosina , Oxaliplatino
4.
Methods Mol Biol ; 2510: 129-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776323

RESUMEN

Adeno-associated viruses (AAV) are useful vectors for transducing cells in vitro and in vivo. Targeting of specific cell subsets with AAV is limited by the broad tropism of AAV serotypes. Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Their small size and high solubility allow easy reformatting into fusion proteins. In this chapter we provide protocols for inserting a P2X7-specific nanobody into a surface loop of the VP1 capsid protein of AAV2. Such nanobody-displaying recombinant AAV allow 50- to 500-fold stronger transduction of P2X7-expressing cells than the parental AAV. We provide protocols for monitoring the transduction of P2X7-expressing cells by nanobody-displaying rAAV by flow cytometry and fluorescence microscopy.


Asunto(s)
Dependovirus , Vectores Genéticos , Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos/genética , Transducción Genética , Tropismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA