Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(21): e0126922, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226965

RESUMEN

For decades, quaternary ammonium compounds (QAC)-based sanitizers have been broadly used in food processing environments to control foodborne pathogens such as Listeria monocytogenes. Still, there is a lack of consensus on the likelihood and implication of reduced Listeria susceptibility to benzalkonium chloride (BC) that may emerge due to sublethal exposure to the sanitizers in food processing environments. With a focus on fresh produce processing, we attempted to fill multiple data and evidence gaps surrounding the debate. We determined a strong correlation between tolerance phenotypes and known genetic determinants of BC tolerance with an extensive set of fresh produce isolates. We assessed BC selection on L. monocytogenes through a large-scale and source-structured genomic survey of 25,083 publicly available L. monocytogenes genomes from diverse sources in the United States. With the consideration of processing environment constraints, we monitored the temporal onset and duration of adaptive BC tolerance in both tolerant and sensitive isolates. Finally, we examined residual BC concentrations throughout a fresh produce processing facility at different time points during daily operation. While genomic evidence supports elevated BC selection and the recommendation for sanitizer rotation in the general context of food processing environments, it also suggests a marked variation in the occurrence and potential impact of the selection among different commodities and sectors. For the processing of fresh fruits and vegetables, we conclude that properly sanitized and cleaned facilities are less affected by BC selection and unlikely to provide conditions that are conducive for the emergence of adaptive BC tolerance in L. monocytogenes. IMPORTANCE Our study demonstrates an integrative approach to improve food safety assessment and control strategies in food processing environments through the collective leveraging of genomic surveys, laboratory assays, and processing facility sampling. In the example of assessing reduced Listeria susceptibility to a widely used sanitizer, this approach yielded multifaceted evidence that incorporates population genetic signals, experimental findings, and real-world constraints to help address a lasting debate of policy and practical importance.


Asunto(s)
Listeria monocytogenes , Listeria , Listeria monocytogenes/genética , Compuestos de Benzalconio/farmacología , Farmacorresistencia Bacteriana/genética , Manipulación de Alimentos , Microbiología de Alimentos
2.
PLoS One ; 17(5): e0268513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35584128

RESUMEN

A manatee's primary modality to detect a vessel on a possible collision course is hearing as underwater visibility is limited in many manatee habitats and their visual acuity is poor. We estimate a Florida manatee's ability to detect the sound of an approaching boat and vocalizations in four different soundscapes in Sarasota Bay, FL. Background noise samples were collected every 5 minutes for a two-week period during winter and summer at each location (2019 or 2020). Sound levels in third octave bands (0.5, 1, 2, 4, and 8 kHz) were measured and compared to manatee auditory hearing thresholds and to sound levels of an approaching boat traveling at a slow, medium, or fast speed. Background sound levels in a wider band (1-20 kHz) were calculated to model vocal communication space at each location. We found that a manatee's estimated ability to detect an approaching boat differs greatly among locations, with time of day, and by season, and that fast boats are predicted to be detected later than slow boats. Latency of boat noise detection is estimated to sharply increase when considering unusually loud background noise levels. We suggest that such uncommonly loud conditions (e.g. 95th percentile sound level), not just typical conditions (median sound level), are important to consider for understanding the problem of manatee-boat collisions. Additionally, background noise impacts estimated vocal communication space and may limit the ability of vocal-mediated mother-calf cohesion. Altogether, a manatee's ability to detect acoustic signals of interest is expected to vary greatly spatially and temporally.


Asunto(s)
Trichechus manatus , Acústica , Animales , Ruido , Navíos , Sonido , Trichechus
3.
PLoS One ; 16(7): e0254614, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34255792

RESUMEN

Tropical cyclones have large effects on marine ecosystems through direct (e.g., storm surge) and indirect (e.g., nutrient runoff) effects. Given their intensity, understanding their effects on the marine environment is an important goal for conservation and resource management. In June 2012, Tropical Storm Debby impacted coastal Florida including Tampa Bay. Acoustic recorders were deployed prior to the storm at a shallow water location inside Tampa Bay and a deeper water location in the Gulf of Mexico. Ambient noise levels were significantly higher during the storm, and the highest increases were observed at lower frequencies (≤ 500 Hz). Although the storm did not directly hit the area, mean ambient noise levels were as high as 13.5 dB RMS above levels in non-storm conditions. At both the shallow water and the deep water station, the rate of fish calls showed a variety of patterns over the study period, with some rates decreasing during the storm and others showing no apparent reaction. The rates of fish calls were frequently correlated with storm conditions (storm surge, water temperature), but also with lunar cycle. Reactions to the storm were generally stronger in the inshore station, although fish sounds increased quickly after the storm's passage. Although this was not a major tropical cyclone nor a direct hit on the area, the storm did appear to elicit a behavioral response from the fish community, and ambient noise levels likely limited the abilities of marine species to use sound for activities such as communication. Given the increases in intensity and rainfall predicted for tropical cyclones due to climate change, further studies of the ecological effects of tropical cyclones are needed.


Asunto(s)
Bahías , Peces/fisiología , Sonido , Animales , Tormentas Ciclónicas , Ecosistema , Florida , Golfo de México
4.
Pathogens ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430364

RESUMEN

Salmonella enterica subsp. enterica serotype Enteritidis (SE) is recognized as a major cause of human salmonellosis worldwide, and most human salmonellosis is due to the consumption of contaminated poultry meats and poultry byproducts. Whole-genome sequencing (data were obtained from 96 SE isolates from poultry sources, including an integrated broiler supply chain, farms, slaughterhouses, chicken transporting trucks, and retail chicken meats in South Korea during 2010-2017. Antimicrobial resistance and virulence genes were investigated using WGS data, and the phylogenetic relationship of the isolates was analyzed using single-nucleotide polymorphism (SNP) typing and core genome multilocus sequence typing (cgMLST). All isolates carried aminoglycoside resistance genes, aac (6')- Iaa, and 56 isolates carried multiple antimicrobial resistance genes. The most frequent virulence gene profile, pef-fim-sop-inv.-org-sip-spa-sif-fli-flg-hil-ssa-sse-prg-pag-spv, was found in 90 isolates. The SNP analysis provided a higher resolution than the cgMLST analysis, but the cgMLST analysis was highly congruent with the SNP analysis. The phylogenetic results suggested the presence of resident SE within the facility of processing plants, environments of slaughterhouses, and the integrated broiler supply chain, and the phylogenetically related isolates were found in retail meats. In addition, the SE isolates from different origins showed close genetic relationships indicating that these strains may have originated from a common source. This study could be valuable reference data for future traceback investigations in South Korea.

5.
JASA Express Lett ; 1(1): 011203, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36154092

RESUMEN

This Letter proposes a frequency scaling for processing, storing, and sharing high-bandwidth, passive acoustic spectral data that optimizes data volume while maintaining reasonable data resolution. The format is a hybrid that uses 1 Hz resolution up to 455 Hz and millidecade frequency bands above 455 Hz. This hybrid is appropriate for many types of soundscape analysis, including detecting different types of soundscapes and regulatory applications like computing weighted sound exposure levels. Hybrid millidecade files are compressed compared to the 1 Hz equivalent such that one research center could feasibly store data from hundreds of projects for sharing among researchers globally.

6.
JASA Express Lett ; 1(8): 081201, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-36154245

RESUMEN

In the original paper [JASA Express Lett. 1(1), 011203 (2021)], a method for processing, storing, and sharing high-bandwidth, passive acoustic spectral data that optimizes data volume while maintaining reasonable data resolution was proposed. The format was a hybrid that uses 1-Hz resolution up to 455 Hz and millidecade frequency bands above 455 Hz. The choice of 455 Hz was based on a method of computing the edge frequencies of millidecade bands that is not compatible with summing millidecades to decidecades. This has been corrected. The new transition frequency is the first frequency with a millidecade with greater than 1 Hz, 435 Hz.

7.
Sci Rep ; 10(1): 17863, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082430

RESUMEN

Monitoring ecological changes in marine ecosystems is expensive and time-consuming. Passive acoustic methods provide continuous monitoring of soniferous species, are relatively inexpensive, and can be integrated into a larger network to provide enhanced spatial and temporal coverage of ecological events. We demonstrate how these methods can be used to detect changes in fish populations in response to a Karenia brevis red tide harmful algal bloom by examining sound spectrum levels recorded by two land-based passive acoustic listening stations (PALS) deployed in Sarasota Bay, Florida, before and during a red tide event. Significant and temporally persistent decreases in sound spectrum levels were recorded in real time at both PALS in four frequency bands spanning 0.172-20 kHz after K. brevis cells were opportunistically sampled near the stations. The decrease in sound spectrum levels and increase in K. brevis cell concentrations also coincided with decreased catch per unit effort (CPUE) and species density per unit effort (SDPUE) data for non-clupeid fish and soniferous fish species, as well as increased reports of marine mammal mortalities in the region. These findings demonstrate how PALS can detect and report in real time ecological changes from episodic disturbances, such as harmful algal blooms.


Asunto(s)
Acústica , Dinoflagelados/patogenicidad , Ecosistema , Monitoreo del Ambiente/métodos , Peces , Floraciones de Algas Nocivas , Animales , Estudios de Tiempo y Movimiento
8.
Food Microbiol ; 92: 103575, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950159

RESUMEN

Quasimetagenomics refers to the sequencing of a modified food microbiome to facilitate combined detection and subtyping of targeted pathogens in a single workflow. Through quasimetagenomic sequencing, pathogens are detected and subtyped in a shortened time frame compared to traditional culture enrichment and whole genome sequencing-based analyses. While this method was previously used to detect and subtype Salmonella enterica from chicken, iceberg lettuce, and black pepper, it has not been applied to investigate multiple pathogens in one workflow. A quasimetagenomic method to concertedly detect and subtype Salmonella enterica and Escherichia coli O157:H7 from artificially contaminated romaine lettuce in a single workflow was developed. All quasimetagenomic samples with initial target pathogen inoculum levels of ~1 CFU/g were detected and serotyped after co-enrichment of the two pathogens for 12 h. Single nucleotide polymorphism typing was achievable for some initial pathogen inoculum levels as low as ~0.1 CFU/g. Our results suggest that this method can be used for concerted detection and subtyping of multiple bacterial pathogens from romaine lettuce even at low contamination levels.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Escherichia coli O157/genética , Lactuca/microbiología , Metagenómica/métodos , Salmonella enterica/genética , Animales , Pollos , Recuento de Colonia Microbiana , Escherichia coli O157/clasificación , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/aislamiento & purificación , Contaminación de Alimentos/análisis , Genoma Bacteriano , Piper nigrum/microbiología , Polimorfismo de Nucleótido Simple , Salmonella enterica/clasificación , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/aislamiento & purificación
9.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32358002

RESUMEN

Food safety is a new area for novel applications of metagenomics analysis, which not only can detect and subtype foodborne pathogens in a single workflow but may also produce additional information with in-depth analysis capabilities. In this study, we applied a quasimetagenomic approach by combining short-term enrichment, immunomagnetic separation (IMS), multiple-displacement amplification (MDA), and nanopore sequencing real-time analysis for simultaneous detection of Salmonella and Escherichia coli in wheat flour. Tryptic soy broth was selected for the 12-h enrichment of samples at 42°C. Enrichments were subjected to IMS using beads capable of capturing both Salmonella and E. coli MDA was performed on harvested beads, and amplified DNA fragments were subjected to DNA library preparation for sequencing. Sequencing was performed on a portable device with real-time basecalling adaptability, and resulting sequences were subjected to two parallel pipelines for further analysis. After 1 h of sequencing, the quasimetagenomic approach could detect all targets inoculated at approximately 1 CFU/g flour to the species level. Discriminatory power was determined by simultaneous detection of dual inoculums of Salmonella and E. coli, absence of detection in control samples, and consistency in microbial flora composition of the same flour samples over several rounds of experiments. The total turnaround time for detection was approximately 20 h. Longer sequencing for up to 15 h enabled serotyping for many of the samples with more than 99% genome coverage, which could be subjected to other appropriate genetic analysis pipelines in less than a total of 36 h.IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) and Salmonella are of serious concern in low-moisture foods, including wheat flour and its related products, causing illnesses, outbreaks, and recalls. The development of advanced detection methods based on molecular principles of analysis is essential to incorporate into interventions intended to reduce the risk from these pathogens. In this work, a quasimetagenomic method based on real-time sequencing analysis and assisted by magnetic capture and DNA amplification was developed. This protocol is capable of detecting multiple Salmonella and/or E. coli organisms in the sample within less than a day, and it can also generate sufficient whole-genome sequences of the target organisms suitable for subsequent bioinformatics analysis. Multiplex detection and identification were accomplished in less than 20 h and additional whole-genome analyses of different nature were attained within 36 h, in contrast to the several days required in previous sequencing pipelines.


Asunto(s)
Escherichia coli/aislamiento & purificación , Harina/microbiología , Microbiología de Alimentos/métodos , Salmonella enterica/aislamiento & purificación , Serotipificación/métodos , Escherichia coli/clasificación , Separación Inmunomagnética/métodos , Fenómenos Magnéticos , Metagenómica/métodos , Secuenciación de Nanoporos/métodos , Salmonella enterica/clasificación , Triticum
10.
Poult Sci ; 98(12): 6973-6979, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31347691

RESUMEN

We evaluated the combination of immunomagnetic separation (IMS), multiple displacement amplification (MDA), and real-time PCR to detect Salmonella from poultry environmental samples. The limits of detection (LODs) of IMS-MDA real-time PCR with different culture enrichment hours (0, 4, 6, and 8 h) were determined in artificially inoculated litter samples from a specific pathogen-free (SPF) poultry farm. In addition, Salmonella detection rate of IMS-MDA real-time PCR with 8-h culture enrichment was compared with that of conventional real-time PCR and culture-based detection by analyzing 174 poultry environmental samples (boot swabs, drag swabs, and litter), and the levels of Salmonella in the samples were quantified using the most probably number method. The LODs of IMS-MDA real-time PCR with 0, 4 to 6, and 8-h enrichment were 10, 1, and 0.1 CFU/g, respectively. Salmonella was detected in 25 of the 174 environmental samples (14.4%) by IMS-MDA real-time PCR, compared with 24 (13.8%) by conventional real-time PCR and 19 (10.9%) by culturing. Cohen's kappa index indicated strong concordance (0.79) between IMS-MDA real-time PCR and culture detection. We demonstrated the potential of the IMS-MDA real-time PCR assay as a faster and more sensitive alternative to culture-based Salmonella detection from poultry environmental samples.


Asunto(s)
Pollos , Genoma Bacteriano , Vivienda para Animales , Separación Inmunomagnética/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Salmonella/aislamiento & purificación , Animales , ADN Bacteriano/genética , Microbiología Ambiental , Granjas , Pisos y Cubiertas de Piso
11.
J Vis Exp ; (140)2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30417889

RESUMEN

Quasi-metagenomics sequencing refers to the sequencing-based analysis of modified microbiomes of food and environmental samples. In this protocol, microbiome modification is designed to concentrate genomic DNA of a target foodborne pathogen contaminant to facilitate the detection and subtyping of the pathogen in a single workflow. Here, we explain and demonstrate the sample preparation steps for the quasi-metagenomics analysis of Salmonella enterica from representative food and environmental samples including alfalfa sprouts, ground black pepper, ground beef, chicken breast and environmental swabs. Samples are first subjected to the culture enrichment of Salmonella for a shortened and adjustable duration (4-24 h). Salmonella cells are then selectively captured from the enrichment culture by immunomagnetic separation (IMS). Finally, multiple displacement amplification (MDA) is performed to amplify DNA from IMS-captured cells. The DNA output of this protocol can be sequenced by high throughput sequencing platforms. An optional quantitative PCR analysis can be performed to replace sequencing for Salmonella detection or assess the concentration of Salmonella DNA before sequencing.


Asunto(s)
Microbiología de Alimentos/métodos , Separación Inmunomagnética/métodos , Metagenómica/métodos , Salmonella enterica , Animales , Bovinos , Monitoreo del Ambiente , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , Reacción en Cadena de la Polimerasa
12.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29196295

RESUMEN

Metagenomics analysis of food samples promises isolation-independent detection and subtyping of foodborne bacterial pathogens in a single workflow. The selective concentration of Salmonella genomic DNA by immunomagnetic separation (IMS) and multiple displacement amplification (MDA) shortened the time for culture enrichment of Salmonella-spiked raw chicken breast samples by over 12 h while permitting serotyping and high-fidelity single nucleotide polymorphism (SNP) typing of the pathogen using short shotgun sequencing reads. The herein-termed quasimetagenomics approach was evaluated on Salmonella-spiked lettuce and black peppercorn samples as well as retail chicken parts naturally contaminated with different serotypes of Salmonella Culture enrichment of between 8 and 24 h was required for detecting and subtyping naturally occurring Salmonella from unspiked chicken parts compared with 4- to 12-h culture enrichment when Salmonella-spiked food samples were analyzed, indicating the likely need for longer culture enrichment to revive low levels of stressed or injured Salmonella cells in food. A further acceleration of the workflow was achieved by real-time nanopore sequencing. After 1.5 h of analysis on a potable sequencer, sufficient data were generated from sequencing the IMS-MDA products of a cultured-enriched lettuce sample to enable serotyping and robust phylogenetic placement of the inoculated isolate.IMPORTANCE Both culture enrichment and next-generation sequencing remain time-consuming processes for food testing, whereas rapid methods for pathogen detection are widely available. Our study demonstrated a substantial acceleration of these processes by the use of immunomagnetic separation (IMS) with multiple displacement amplification (MDA) and real-time nanopore sequencing. In one example, the combined use of the two methods delivered a less than 24-h turnaround time from the collection of a Salmonella-contaminated lettuce sample to the phylogenetic identification of the pathogen. An improved efficiency such as this is important for further expanding the use of whole-genome and metagenomics sequencing in the microbial analysis of food. Our results suggest the potential of the quasimetagenomics approach in areas where rapid detection and subtyping of foodborne pathogens are important, such as for foodborne outbreak response and the precision tracking and monitoring of foodborne pathogens in production environments and supply chains.


Asunto(s)
Microbiología de Alimentos , Lactuca/microbiología , Carne/microbiología , Piper nigrum/microbiología , Salmonella enterica/aislamiento & purificación , Animales , Pollos , Metagenómica , Nanoporos , Análisis de Secuencia de ADN , Serogrupo
13.
Sci Rep ; 7(1): 8350, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827572

RESUMEN

Although it is known that seals can use their whiskers (vibrissae) to extract relevant information from complex underwater flow fields, the underlying functioning of the system and the signals received by the sensors are poorly understood. Here we show that the vibrations of seal whiskers may provide information about hydrodynamic events and enable the sophisticated wake-tracking abilities of these animals. We developed a miniature accelerometer tag to study seal whisker movement in situ. We tested the ability of the tag to measure vibration in excised whiskers in a flume in response to laminar flow and disturbed flow. We then trained a seal to wear the tag and follow an underwater hydrodynamic trail to measure the whisker signals available to the seal. The results showed that whiskers vibrated at frequencies of 100-300 Hz, with a dynamic response. These measurements are the first to capture the incoming signals received by the vibrissae of a live seal and show that there are prominent signals at frequencies where the seal tactogram shows good sensitivity. Tapping into the mechanoreceptive interface between the animal and the environment may help to decipher the functional basis of this extraordinary hydrodynamic detection ability.


Asunto(s)
Hidrodinámica , Phoca/fisiología , Vibración , Vibrisas/fisiología , Animales , Masculino , Phoca/anatomía & histología , Vibrisas/anatomía & histología
14.
J Exp Biol ; 220(Pt 19): 3432-3441, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754715

RESUMEN

To improve conservation strategies for threatened sea turtles, more knowledge on their ecology, behavior, and how they cope with severe and changing weather conditions is needed. Satellite and animal motion datalogging tags were used to study the inter-nesting behavior of two female loggerhead turtles in the Gulf of Mexico, which regularly has hurricanes and tropical storms during nesting season. We contrast the behavioral patterns and swimming energetics of these two turtles, the first tracked in calm weather and the second tracked before, during and after a tropical storm. Turtle 1 was highly active and swam at the surface or submerged 95% of the time during the entire inter-nesting period, with a high estimated specific oxygen consumption rate (0.95 ml min-1 kg-0.83). Turtle 2 was inactive for most of the first 9 days of the inter-nesting period, during which she rested at the bottom (80% of the time) with low estimated oxygen consumption (0.62 ml min-1 kg-0.83). Midway through the inter-nesting period, turtle 2 encountered a tropical storm and became highly active (swimming 88% of the time during and 95% after the storm). Her oxygen consumption increased significantly to 0.97 ml min-1 kg-0.83 during and 0.98 ml min-1 kg-0.83 after the storm. However, despite the tropical storm, turtle 2 returned to the nesting beach, where she successfully re-nested 75 m from her previous nest. Thus, the tropical storm had a minor effect on this female's individual nesting success, even though the storm caused 90% loss nests at Casey Key.


Asunto(s)
Tormentas Ciclónicas , Buceo , Comportamiento de Nidificación , Tortugas/fisiología , Animales , Conservación de los Recursos Naturales , Conducta Alimentaria , Florida
15.
J Food Prot ; 80(9): 1408-1414, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28741960

RESUMEN

Outbreaks of salmonellosis have been associated with consumption of high-sugar, low-water activity (aw) foods. The study reported here was focused on determining the effect of storage temperature (5 and 25°C) on survival of initially high and low levels of Salmonella in dry-inoculated sucrose (aw 0.26 ± 0.01 to 0.54 ± 0.01) and wet-inoculated sucrose (aw 0.24 ± 0.01 to 0.44 ± 0.04) over a 52-week period. With the exception of dry-inoculated sucrose at aw 0.26, Salmonella survived for 52 weeks in dry- and wet-inoculated sucrose stored at 5 and 25°C. Retention of viability was clearly favored in sucrose stored at 5°C compared with 25°C, regardless of level or type of inoculum or aw. Survival at 5°C was not affected by aw. Initial high-inoculum counts of 5.18 and 5.25 log CFU/g of dry-inoculated sucrose (aw 0.26 and 0.54, respectively) stored for 52 weeks at 5°C decreased by 0.56 and 0.53 log CFU/g; counts decreased by >4.18 and >4.25 log CFU/g in samples stored at 25°C. Inactivation rates in wet-inoculated sucrose were similar to those in dry-inoculated sucrose; however, a trend toward higher persistence of Salmonella in dry- versus wet-inoculated sucrose suggests there was a higher proportion of cells in the wet inoculum with low tolerance to osmotic stress. Survival patterns were similar in sucrose initially containing a low level of Salmonella (2.26 to 2.91 log CFU/g). The pathogen was recovered from low-inoculated sucrose stored at 5°C for 52 weeks regardless of type of inoculum or aw and from dry-inoculated sucrose (aw 0.54) and wet-inoculated sucrose (aw 0.24) stored at 25°C for 12 and 26 weeks, respectively. Results emphasize the importance of preventing contamination of sucrose intended for use as an ingredient in foods not subjected to a treatment that would be lethal to Salmonella.


Asunto(s)
Manipulación de Alimentos/métodos , Viabilidad Microbiana , Salmonella/crecimiento & desarrollo , Sacarosa , Recuento de Colonia Microbiana , Microbiología de Alimentos , Temperatura , Agua
16.
Artículo en Inglés | MEDLINE | ID: mdl-28194485

RESUMEN

Manatees live in shallow, frequently turbid waters. The sensory means by which they navigate in these conditions are unknown. Poor visual acuity, lack of echolocation, and modest chemosensation suggest that other modalities play an important role. Rich innervation of sensory hairs that cover the entire body and enlarged somatosensory areas of the brain suggest that tactile senses are good candidates. Previous tests of detection of underwater vibratory stimuli indicated that they use passive movement of the hairs to detect particle displacements in the vicinity of a micron or less for frequencies from 10 to 150 Hz. In the current study, hydrodynamic stimuli were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz. Go/no-go tests of manatee postcranial mechanoreception of hydrodynamic stimuli indicated excellent sensitivity but about an order of magnitude less than the facial region. When the vibrissae were trimmed, detection thresholds were elevated, suggesting that the vibrissae were an important means by which detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90% correct at all frequencies tested. We hypothesize that manatees utilize vibrissae as a three-dimensional array to detect and localize low-frequency hydrodynamic stimuli.


Asunto(s)
Hidrodinámica , Tacto/fisiología , Trichechus manatus/fisiología , Vibración , Vibrisas/fisiología , Animales , Florida , Masculino
17.
PLoS One ; 11(10): e0159711, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27741231

RESUMEN

Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.


Asunto(s)
Potenciales Evocados Auditivos/fisiología , Tortugas/fisiología , Estimulación Acústica , Aire/análisis , Animales , Umbral Auditivo/fisiología , Tortugas/crecimiento & desarrollo , Agua/química
18.
Assay Drug Dev Technol ; 14(7): 381-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27494736

RESUMEN

Cell models are becoming more complex to better mimic the in vivo environment and provide greater predictivity for compound efficacy and toxicity. There is an increasing interest in exploring the use of three-dimensional (3D) spheroids for modeling developmental and tissue biology with the goal of accelerating translational research in these areas. Accordingly, the development of high-throughput quantitative assays using 3D cultures is an active area of investigation. In this study, we have developed and optimized methods for the formation of 3D liver spheroids derived from human iPS cells and used those for toxicity assessment. We used confocal imaging and 3D image analysis to characterize cellular information from a 3D matrix to enable a multi-parametric comparison of different spheroid phenotypes. The assay enables characterization of compound toxicities by spheroid size (volume) and shape, cell number and spatial distribution, nuclear characterization, number and distribution of cells expressing viability, apoptosis, mitochondrial potential, and viability marker intensities. In addition, changes in the content of live, dead, and apoptotic cells as a consequence of compound exposure were characterized. We tested 48 compounds and compared induced pluripotent stem cell (iPSC)-derived hepatocytes and HepG2 cells in both two-dimensional (2D) and 3D cultures. We observed significant differences in the pharmacological effects of compounds across the two cell types and between the different culture conditions. Our results indicate that a phenotypic assay using 3D model systems formed with human iPSC-derived hepatocytes is suitable for high-throughput screening and can be used for hepatotoxicity assessment in vitro.


Asunto(s)
Citotoxinas/toxicidad , Hepatocitos/efectos de los fármacos , Imagenología Tridimensional/métodos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Fenotipo , Esferoides Celulares/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Células Hep G2 , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Hígado/citología , Hígado/diagnóstico por imagen , Hígado/efectos de los fármacos , Microscopía Confocal/métodos , Esferoides Celulares/fisiología
19.
PLoS One ; 11(8): e0160695, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27500533

RESUMEN

Artificial reefs are commonly used as a management tool, in part to provide ecosystem services, including opportunities for recreational fishing and diving. Quantifying the use of artificial reefs by recreational boaters is essential for determining their value as ecosystem services. In this study, four artificial-natural reef pairs in the eastern Gulf of Mexico (off western Florida) were investigated for boat visitation rates using autonomous acoustic recorders. Digital SpectroGram (DSG) recorders were used to collect sound files from April 2013 to March 2015. An automatic detection algorithm was used to identify boat noise in individual files using the harmonic peaks generated by boat engines, and by comparing the sound amplitude of each file with surrounding files. In all four pairs, visitation rates were significantly higher at the artificial reef than the natural reef. This increase in boat visitation was likely due to actual or perceived increased quality of fishing and diving at the artificial reefs, or to lack of knowledge of the presence or locations of the natural reefs. Inshore reefs (<15 m depth) had high variability in monthly visitation rates, which were generally highest in warmer months. However the seasonal signal was dampened on offshore reefs (>25 m depth). This study appears to be the first to use acoustic data to measure participant use of boating destinations, and highlights the utility of acoustic monitoring for the valuation of this important ecosystem service provided by artificial reefs.


Asunto(s)
Acústica/instrumentación , Arrecifes de Coral , Ecosistema , Monitoreo del Ambiente , Navíos/estadística & datos numéricos , Golfo de México , Dinámica Poblacional
20.
Methods Mol Biol ; 1391: 187-99, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27108318

RESUMEN

Micropropagation and production of Veratrum californicum is most successful when using a premixed Murishage and Skoog basal medium with vitamins and a 5-week subculture cycle at 16 °C for multiplication. These culture conditions provide the best percent survival after acclimatization in the greenhouse. However, clone response to temperature and light quality within culture conditions varies. Micropropagated plants have mass and morphology similar to 2- or 3-year-old seedlings. Acclimatized plantlets can then be grown in the greenhouse using sub-irrigation (ebb and flood) to maintain substrate volumetric water content > 44 %. Growth cycle in the greenhouse must be about 100 days, followed by dormancy for 5 months at 5 °C.


Asunto(s)
Aclimatación , Agricultura/métodos , Técnicas de Cultivo/métodos , Veratrum/crecimiento & desarrollo , Frío , Medios de Cultivo/metabolismo , Latencia en las Plantas , Veratrum/anatomía & histología , Veratrum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...