Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731204

RESUMEN

Background: In brain tumor surgery, maximal tumor resection is typically desired. This is complicated by infiltrative tumor cells which cannot be visually distinguished from healthy brain tissue. Optical methods are an emerging field that can potentially revolutionize brain tumor surgery through intraoperative differentiation between healthy and tumor tissues. Methods: This study aimed to systematically explore and summarize the existing literature on the use of Raman Spectroscopy (RS), Hyperspectral Imaging (HSI), Optical Coherence Tomography (OCT), and Diffuse Reflectance Spectroscopy (DRS) for brain tumor detection. MEDLINE, Embase, and Web of Science were searched for studies evaluating the accuracy of these systems for brain tumor detection. Outcome measures included accuracy, sensitivity, and specificity. Results: In total, 44 studies were included, covering a range of tumor types and technologies. Accuracy metrics in the studies ranged between 54 and 100% for RS, 69 and 99% for HSI, 82 and 99% for OCT, and 42 and 100% for DRS. Conclusions: This review provides insightful evidence on the use of optical methods in distinguishing tumor from healthy brain tissue.

2.
Patterns (N Y) ; 4(9): 100830, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37720333

RESUMEN

The black-box nature of most artificial intelligence (AI) models encourages the development of explainability methods to engender trust into the AI decision-making process. Such methods can be broadly categorized into two main types: post hoc explanations and inherently interpretable algorithms. We aimed at analyzing the possible associations between COVID-19 and the push of explainable AI (XAI) to the forefront of biomedical research. We automatically extracted from the PubMed database biomedical XAI studies related to concepts of causality or explainability and manually labeled 1,603 papers with respect to XAI categories. To compare the trends pre- and post-COVID-19, we fit a change point detection model and evaluated significant changes in publication rates. We show that the advent of COVID-19 in the beginning of 2020 could be the driving factor behind an increased focus concerning XAI, playing a crucial role in accelerating an already evolving trend. Finally, we present a discussion with future societal use and impact of XAI technologies and potential future directions for those who pursue fostering clinical trust with interpretable machine learning models.

3.
IEEE J Biomed Health Inform ; 27(2): 744-755, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35731757

RESUMEN

Federated Learning (FL) is a machine learning technique that enables to collaboratively learn valuable information across devices or sites without moving the data. In FL, the model is trained and shared across decentralized locations where data are privately owned. After local training, model updates are sent back to a central server, thus enabling access to distributed data on a large scale while maintaining privacy, security, and data access rights. Although FL is a well-studied topic, existing frameworks are still at an early stage of development. They encounter challenges with respect to scalability, data security, aggregation methodologies, data provenance, and production readiness. In this paper, we propose a novel FL framework that supports functionalities like scalable processing with respect of data, devices, sites and collaborators, monitoring services, privacy, and support for use cases. Furthermore, we integrate multi party computation (MPC) within the FL setup, preventing reverse engineering attacks. The proposed framework has been evaluated in diverse use cases both in cross-device and cross-silo settings. In the former case, in-device FL is leveraged in the context of an AI-driven internet of medical things (IoMT) environment. We demonstrate the framework suitability for a range of AI techniques while benchmarking with conventional centralized training. Furthermore, we prove the feasibility of developing a user-friendly pipeline that enables an efficient implementation of FL in diverse clinical use cases.


Asunto(s)
Internet de las Cosas , Privacidad , Humanos , Benchmarking , Aprendizaje Automático
4.
Cancers (Basel) ; 14(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35326577

RESUMEN

The most important prognostic factor for the survival of advanced-stage epithelial ovarian cancer (EOC) is the completeness of cytoreductive surgery (CRS). Therefore, an intraoperative technique to detect microscopic tumors would be of great value. The aim of this pilot study is to assess the feasibility of near-infrared hyperspectral imaging (HSI) for EOC detection in ex vivo tissue samples. Images were collected during CRS in 11 patients in the wavelength range of 665−975 nm, and processed by calibration, normalization, and noise filtering. A linear support vector machine (SVM) was employed to classify healthy and tumorous tissue (defined as >50% tumor cells). Classifier performance was evaluated using leave-one-out cross-validation. Images of 26 tissue samples from 10 patients were included, containing 26,446 data points that were matched to histopathology. Tumorous tissue could be classified with an area under the curve of 0.83, a sensitivity of 0.81, a specificity of 0.70, and Matthew's correlation coefficient of 0.41. This study paves the way to in vivo and intraoperative use of HSI during CRS. Hyperspectral imaging can scan a whole tissue surface in a fast and non-contact way. Our pilot study demonstrates that HSI and SVM learning can be used to discriminate EOC from surrounding tissue.

5.
AMIA Annu Symp Proc ; 2022: 729-738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37128389

RESUMEN

Federated learning (FL) is a privacy preserving approach to learning that overcome issues related to data access, privacy, and security, which represent key challenges in the healthcare sector. FL enables hospitals to collaboratively learn a shared prediction model without moving the data outside their secure infrastructure. To do so, after having sent model updates to a central server, an update aggregation is performed, and the model is sent back to the sites for further training. Although widely applied on neural networks, the deployment of FL architectures is lacking scalability and support for machine learning techniques such as decision tree-based models. The latter, when embedded in FL, suffer from costly encryption techniques applied for sharing sensitive information such as the splitting decisions within the trees. In this work, we focus on predicting hemodynamic instability on ICU patients by enabling distributed gradient boosting in FL. We employ a clinical dataset from 25 hospitals generated based on the Philips eICU database and we design a FL pipeline that supports neural-based boosting models as well as conventional neural networks. This enhancement enables decision tree models in FL, which represent the state-of-the-art approach for classification tasks involving tabular clinical data. Comparable performances in terms of accuracy, precision, recall and F1 score have been reached when detecting hemodynamic instability in FL, and in a centralized setup. In summary, we demonstrate the feasibility of a scalable FL for detecting hemodynamic instability in ICU data, which preserves privacy and holds the deployment benefits of a neural-based architecture.


Asunto(s)
Aprendizaje Profundo , Humanos , Bases de Datos Factuales , Hospitales , Aprendizaje Automático , Privacidad , Hemodinámica
6.
Biomed Opt Express ; 13(12): 6470-6483, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36589562

RESUMEN

Glial tumors grow diffusely in the brain. Survival is correlated to the extent of tumor removal, but tumor borders are often invisible. Resection beyond the borders as defined by conventional methods may further improve prognosis. In this proof-of-concept study, we evaluate diffuse reflectance spectroscopy (DRS) for discrimination between glial tumors and normal brain ex vivo. DRS spectra and histology were acquired from 22 tumor samples and nine brain tissue samples retrieved from 30 patients. The content of biological chromophores and scattering features were estimated by fitting a model derived from diffusion theory to the DRS spectra. DRS parameters differed significantly between tumor and normal brain tissue. Classification using random forest yielded a sensitivity and specificity for the detection of low-grade gliomas of 82.0% and 82.7%, respectively, and the area under curve (AUC) was 0.91. Applied in a hand-held probe or biopsy needle, DRS has the potential to provide intra-operative tissue analysis.

7.
Biomed Eng Online ; 20(1): 6, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413426

RESUMEN

BACKGROUND: Minimally invasive spine surgery is dependent on accurate navigation. Computer-assisted navigation is increasingly used in minimally invasive surgery (MIS), but current solutions require the use of reference markers in the surgical field for both patient and instruments tracking. PURPOSE: To improve reliability and facilitate clinical workflow, this study proposes a new marker-free tracking framework based on skin feature recognition. METHODS: Maximally Stable Extremal Regions (MSER) and Speeded Up Robust Feature (SURF) algorithms are applied for skin feature detection. The proposed tracking framework is based on a multi-camera setup for obtaining multi-view acquisitions of the surgical area. Features can then be accurately detected using MSER and SURF and afterward localized by triangulation. The triangulation error is used for assessing the localization quality in 3D. RESULTS: The framework was tested on a cadaver dataset and in eight clinical cases. The detected features for the entire patient datasets were found to have an overall triangulation error of 0.207 mm for MSER and 0.204 mm for SURF. The localization accuracy was compared to a system with conventional markers, serving as a ground truth. An average accuracy of 0.627 and 0.622 mm was achieved for MSER and SURF, respectively. CONCLUSIONS: This study demonstrates that skin feature localization for patient tracking in a surgical setting is feasible. The technology shows promising results in terms of detected features and localization accuracy. In the future, the framework may be further improved by exploiting extended feature processing using modern optical imaging techniques for clinical applications where patient tracking is crucial.


Asunto(s)
Procedimientos Quirúrgicos Mínimamente Invasivos , Piel , Columna Vertebral/cirugía , Cirugía Asistida por Computador
8.
Sensors (Basel) ; 20(23)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291409

RESUMEN

The primary treatment for malignant brain tumors is surgical resection. While gross total resection improves the prognosis, a supratotal resection may result in neurological deficits. On the other hand, accurate intraoperative identification of the tumor boundaries may be very difficult, resulting in subtotal resections. Histological examination of biopsies can be used repeatedly to help achieve gross total resection but this is not practically feasible due to the turn-around time of the tissue analysis. Therefore, intraoperative techniques to recognize tissue types are investigated to expedite the clinical workflow for tumor resection and improve outcome by aiding in the identification and removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with the power of extracting additional information from the imaged tissue. Because HSI images cannot be visually assessed by human observers, we instead exploit artificial intelligence techniques and leverage a Convolutional Neural Network (CNN) to investigate the potential of HSI in twelve in vivo specimens. The proposed framework consists of a 3D-2D hybrid CNN-based approach to create a joint extraction of spectral and spatial information from hyperspectral images. A comparison study was conducted exploiting a 2D CNN, a 1D DNN and two conventional classification methods (SVM, and the SVM classifier combined with the 3D-2D hybrid CNN) to validate the proposed network. An overall accuracy of 80% was found when tumor, healthy tissue and blood vessels were classified, clearly outperforming the state-of-the-art approaches. These results can serve as a basis for brain tumor classification using HSI, and may open future avenues for image-guided neurosurgical applications.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Inteligencia Artificial , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Humanos , Imágenes Hiperespectrales , Redes Neurales de la Computación
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1169-1173, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018195

RESUMEN

The main curative treatment for localized colon cancer is surgical resection. However when tumor residuals are left positive margins are found during the histological examinations and additional treatment is needed to inhibit recurrence. Hyperspectral imaging (HSI) can offer non-invasive surgical guidance with the potential of optimizing the surgical effectiveness. In this paper we investigate the capability of HSI for automated colon cancer detection in six ex-vivo specimens employing a spectral-spatial patch-based classification approach. The results demonstrate the feasibility in assessing the benign and malignant boundaries of the lesion with a sensitivity of 0.88 and specificity of 0.78. The results are compared with the state-of-the-art deep learning based approaches. The method with a new hybrid CNN outperforms the state-of the-art approaches (0.74 vs. 0.82 AUC). This study paves the way for further investigation towards improving surgical outcomes with HSI.


Asunto(s)
Neoplasias del Colon , Cirugía Asistida por Computador , Biopsia , Neoplasias del Colon/diagnóstico por imagen , Humanos , Recurrencia Local de Neoplasia/diagnóstico por imagen
10.
Sensors (Basel) ; 20(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610555

RESUMEN

Surgical navigation systems are increasingly used for complex spine procedures to avoid neurovascular injuries and minimize the risk for reoperations. Accurate patient tracking is one of the prerequisites for optimal motion compensation and navigation. Most current optical tracking systems use dynamic reference frames (DRFs) attached to the spine, for patient movement tracking. However, the spine itself is subject to intrinsic movements which can impact the accuracy of the navigation system. In this study, we aimed to detect the actual patient spine features in different image views captured by optical cameras, in an augmented reality surgical navigation (ARSN) system. Using optical images from open spinal surgery cases, acquired by two gray-scale cameras, spinal landmarks were identified and matched in different camera views. A computer vision framework was created for preprocessing of the spine images, detecting and matching local invariant image regions. We compared four feature detection algorithms, Speeded Up Robust Feature (SURF), Maximal Stable Extremal Region (MSER), Features from Accelerated Segment Test (FAST), and Oriented FAST and Rotated BRIEF (ORB) to elucidate the best approach. The framework was validated in 23 patients and the 3D triangulation error of the matched features was < 0 . 5 mm. Thus, the findings indicate that spine feature detection can be used for accurate tracking in navigated surgery.


Asunto(s)
Realidad Aumentada , Imagen Óptica , Columna Vertebral/diagnóstico por imagen , Cirugía Asistida por Computador , Sistemas de Navegación Quirúrgica , Algoritmos , Humanos , Imagenología Tridimensional , Fantasmas de Imagen , Columna Vertebral/cirugía
11.
ACS Appl Mater Interfaces ; 11(13): 12202-12208, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30900442

RESUMEN

Fluorescent light modulation by small electric potentials has gained huge interest in the past few years. This phenomenon, called electrofluorochromism, is of the utmost importance for applications in optoelectronic devices. Huge efforts are being addressed to developing electrofluorochromic systems with improved performances. One of the most critical issue is their low cyclability, which hampers their widespread use. It mostly depends on the intrinsic reversibility of the electroactive/fluorophore molecular system and on device architecture. Here we show a novel fluorene-based mixed-valence electrofluorochromic system that allows direct electrofluorochromic switching and exhibits incomparable electrochemical reversibility and device cyclability of more than 10 000 cycles.

12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3909-3914, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946727

RESUMEN

Surgical navigation systems can enhance surgeon vision and form a reliable image-guided tool for complex interventions as spinal surgery. The main prerequisite is successful patient tracking which implies optimal motion compensation. Nowadays, optical tracking systems can satisfy the need of detecting patient position during surgery, allowing navigation without the risk of damaging neurovascular structures. However, the spine is subject to vertebrae movements which can impact the accuracy of the system. The aim of this paper is to investigate the feasibility of a novel approach for offering a direct relationship to movements of the spinal vertebra during surgery. To this end, we detect and track patient spine features between different image views, captured by several optical cameras, for vertebrae rotation and displacement reconstruction. We analyze patient images acquired in a real surgical scenario by two gray-scale cameras, embedded in the flat-panel detector of the C-arm. Spine segmentation is performed and anatomical landmarks are designed and tracked between different views, while experimenting with several feature detection algorithms (e.g. SURF, MSER, etc.). The 3D positions for the matched features are reconstructed and the triangulation errors are computed for an accuracy assessment. The analysis of the triangulation accuracy reveals a mean error of 0.38 mm, which demonstrates the feasibility of spine tracking and strengthens the clinical application of optical imaging for spinal navigation.


Asunto(s)
Imagenología Tridimensional , Procedimientos Neuroquirúrgicos , Columna Vertebral/cirugía , Cirugía Asistida por Computador , Algoritmos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...