Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biochem J ; 481(10): 643-651, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38683688

RESUMEN

GCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in many key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function. However, in many cases these reagents have not been rigorously validated, leading to potentially misleading results. In this report we tested several commercially-available antibodies for GCN5L1, and found that two-thirds of those available did not unambiguously detect the protein by western blot in cultured mouse cells or ex vivo liver tissue. These data suggest that previously published studies which used these unverified antibodies to measure GCN5L1 protein abundance, in the absence of other independent methods of corroboration, should be interpreted with appropriate caution.


Asunto(s)
Anticuerpos , Animales , Ratones , Anticuerpos/inmunología , Anticuerpos/metabolismo , Ratones Noqueados , Hígado/metabolismo , Hígado/inmunología , Humanos , Proteínas del Tejido Nervioso , Proteínas Mitocondriales
2.
Cell Signal ; 116: 111065, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38281616

RESUMEN

Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.


Asunto(s)
Isquemia Miocárdica , Proteínas Proto-Oncogénicas c-akt , Humanos , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Hipoxia/metabolismo , Lisina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Mitocondriales/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Factores de Transcripción/metabolismo
3.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961692

RESUMEN

Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.

4.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503156

RESUMEN

GCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in a number of key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function. However, in many cases these reagents have not been rigorously validated, leading to potentially misleading results. In this report we tested several commercially-available antibodies for GCN5L1, and found that two-thirds of those available did not unambiguously detect the protein by western blot in cultured mouse cells or ex vivo liver tissue. These data suggest that previously published studies which used these unverified antibodies to measure GCN5L1 protein abundance, in the absence of other independent methods of corroboration, should be interpreted with appropriate caution.

5.
iScience ; 26(6): 106942, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37305705

RESUMEN

General control of amino acid synthesis 5-like 1 (GCN5L1) was previously identified as a key regulator of protein lysine acetylation in mitochondria. Subsequent studies demonstrated that GCN5L1 regulates the acetylation status and activity of mitochondrial fuel substrate metabolism enzymes. However, the role of GCN5L1 in response to chronic hemodynamic stress is largely unknown. Here, we show that cardiomyocyte-specific GCN5L1 knockout mice (cGCN5L1 KO) display exacerbated heart failure progression following transaortic constriction (TAC). Mitochondrial DNA and protein levels were decreased in cGCN5L1 KO hearts after TAC, and isolated neonatal cardiomyocytes with reduced GCN5L1 expression had lower bioenergetic output in response to hypertrophic stress. Loss of GCN5L1 expression led to a decrease in the acetylation status of mitochondrial transcription factor A (TFAM) after TAC in vivo, which was linked to a reduction in mtDNA levels in vitro. Together, these data suggest that GCN5L1 may protect from hemodynamic stress by maintaining mitochondrial bioenergetic output.

6.
Sci Rep ; 13(1): 6134, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061564

RESUMEN

G-protein coupled receptors (GPCRs) mediate signal transduction from the cellular surface to intracellular metabolic pathways. While the function of many GPCRs has been delineated previously, a significant number require further characterization to elucidate their cellular function. G-protein coupled receptor 19 (GPR19) is a poorly characterized class A GPCR which has been implicated in the regulation of circadian rhythm, tumor metastasis, and mitochondrial homeostasis. In this report, we use a novel knockout (KO) mouse model to examine the role of GPR19 in whole-body metabolic regulation. We show that loss of GPR19 promotes increased energy expenditure and decreased activity in both male and female mice. However, only male GPR19 KO mice display glucose intolerance in response to a high fat diet. Loss of GPR19 expression in male mice, but not female mice, resulted in diet-induced hepatomegaly, which was associated with decreased expression of key fatty acid oxidation genes in male GPR19 KO livers. Overall, our data suggest that loss of GPR19 impacts whole-body energy metabolism in diet-induced obese mice in a sex-dependent manner.


Asunto(s)
Hígado , Receptores Acoplados a Proteínas G , Masculino , Animales , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Hígado/metabolismo , Metabolismo Energético/genética , Dieta Alta en Grasa/efectos adversos
7.
Cardiovasc Res ; 119(2): 571-586, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35704040

RESUMEN

AIMS: Brain-derived neurotrophic factor (BDNF) is markedly decreased in heart failure patients. Both BDNF and its receptor, tropomyosin-related kinase receptor (TrkB), are expressed in cardiomyocytes; however, the role of myocardial BDNF signalling in cardiac pathophysiology is poorly understood. Here, we investigated the role of BDNF/TrkB signalling in cardiac stress response to exercise and pathological stress. METHODS AND RESULTS: We found that myocardial BDNF expression was increased in mice with swimming exercise but decreased in a mouse heart failure model and human failing hearts. Cardiac-specific TrkB knockout (cTrkB KO) mice displayed a blunted adaptive cardiac response to exercise, with attenuated upregulation of transcription factor networks controlling mitochondrial biogenesis/metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). In response to pathological stress (transaortic constriction, TAC), cTrkB KO mice showed an exacerbated heart failure progression. The downregulation of PGC-1α in cTrkB KO mice exposed to exercise or TAC resulted in decreased cardiac energetics. We further unravelled that BDNF induces PGC-1α upregulation and bioenergetics through a novel signalling pathway, the pleiotropic transcription factor Yin Yang 1. CONCLUSION: Taken together, our findings suggest that myocardial BDNF plays a critical role in regulating cellular energetics in the cardiac stress response.


Asunto(s)
Insuficiencia Cardíaca , Factores de Transcripción , Animales , Humanos , Ratones , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Metabolismo Energético , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Transcripción YY1/metabolismo
8.
Physiol Rep ; 10(15): e15415, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35924321

RESUMEN

Left ventricular diastolic dysfunction is a structural and functional condition that precedes the development of heart failure with preserved ejection fraction (HFpEF). The etiology of diastolic dysfunction includes alterations in fuel substrate metabolism that negatively impact cardiac bioenergetics, and may precipitate the eventual transition to heart failure. To date, the molecular mechanisms that regulate early changes in fuel metabolism leading to diastolic dysfunction remain unclear. In this report, we use a diet-induced obesity model in aged mice to show that inhibitory lysine acetylation of the pyruvate dehydrogenase (PDH) complex promotes energetic deficits that may contribute to the development of diastolic dysfunction in mouse hearts. Cardiomyocyte-specific deletion of the mitochondrial lysine acetylation regulatory protein GCN5L1 prevented hyperacetylation of the PDH complex subunit PDHA1, allowing aged obese mice to continue using pyruvate as a bioenergetic substrate in the heart. Our findings suggest that changes in mitochondrial protein lysine acetylation represent a key metabolic component of diastolic dysfunction that precedes the development of heart failure.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Dieta Alta en Grasa , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Complejo Piruvato Deshidrogenasa/metabolismo , Piruvatos , Volumen Sistólico
9.
Am J Physiol Heart Circ Physiol ; 322(5): H762-H768, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245133

RESUMEN

Reversible lysine acetylation regulates the activity of cardiac metabolic enzymes, including those controlling fuel substrate metabolism. Mitochondrial-targeted GCN5L1 and SIRT3 have been shown to regulate the acetylation status of mitochondrial enzymes, but the role that lysine acetylation plays in driving metabolic differences between male and female hearts is not currently known. In this study, we describe a significant difference in GCN5L1 levels between male and female mouse hearts, and in the hearts of women between post- and premenopausal age. We further find that estrogen drives GCN5L1 expression in a cardiac cell line and uses pharmacological approaches to determine the mechanism to be G protein-coupled estrogen receptor (GPER) activation, via translational regulation.NEW & NOTEWORTHY We demonstrate here for the first time that mitochondrial protein acetylation is increased in female hearts, associated with an increase in GCN5L1 levels through a GPER-dependent mechanism. These findings reveal a new potential mediator of divergent cardiac mitochondrial function between men and women.


Asunto(s)
Proteínas del Tejido Nervioso , Sirtuina 3 , Acetilación , Animales , Estrógenos , Femenino , Corazón/fisiología , Humanos , Masculino , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
10.
Curr Res Physiol ; 5: 55-62, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35128468

RESUMEN

Previous studies have shown that treatment with recombinant adropin, a circulating peptide secreted by the liver and brain, restores glucose utilization in the hearts of diet-induced obese mice. This restoration of fuel substrate flexibility, which is lost in obese and diabetic animals, has the potential to improve contractile function in the diabetic heart. Using an ex vivo approach, we examined whether short-term adropin treatment could enhance cardiac function in a mouse model of diet-induced obesity. Our study showed that acute adropin treatment reduces inhibitory phosphorylation of pyruvate dehydrogenase in primary neonatal cardiomyocytes, and leads to moderate improvements in ex vivo cardiac function in mice fed a low fat diet. Conversely, short-term exposure to adropin led to a small decrease in cardiac function in mice fed a long-term high fat diet. Insulin treatment did not significantly alter cardiac function in adropin treated hearts from either low or high fat diet mice, however acute adropin treatment did moderately restore some aspects of downstream insulin signaling in high fat diet fed mice. Overall, these data suggest that in an ex vivo setting, acute adropin treatment alone is not sufficient to promote improved cardiac function in obese animals.

11.
Am J Physiol Cell Physiol ; 321(3): C519-C534, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34319827

RESUMEN

Mitochondria are recognized as signaling organelles, because under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased posttranslational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel cross talk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


Asunto(s)
Cardiomiopatías/genética , Proteínas de Transporte de Catión/genética , Isocitrato Deshidrogenasa/genética , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , Miocitos Cardíacos/metabolismo , Proteínas de Transporte de Fosfato/genética , Procesamiento Proteico-Postraduccional , Proteínas Transportadoras de Solutos/genética , Acetilación , Animales , Transporte Biológico , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Proteínas de Transporte de Catión/deficiencia , Metabolismo Energético , Femenino , Redes Reguladoras de Genes , Isocitrato Deshidrogenasa/metabolismo , Masculino , Malonatos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/deficiencia , Modelos Moleculares , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Proteínas de Transporte de Fosfato/deficiencia , Fosfatos , Conformación Proteica , Mapeo de Interacción de Proteínas , Transducción de Señal , Sirtuinas/genética , Sirtuinas/metabolismo , Proteínas Transportadoras de Solutos/deficiencia
12.
J Mol Cell Cardiol ; 148: 1-14, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32853649

RESUMEN

RATIONALE: Among its many biological roles, fibroblast growth factor 2 (FGF2) protects the heart from dysfunction and damage associated with an ischemic attack. Our laboratory demonstrated that its protection against myocardial dysfunction occurs by the low molecular weight (LMW) isoform of FGF2, while the high molecular weight (HMW) isoforms are associated with a worsening in post-ischemic recovery of cardiac function. LMW FGF2-mediated cardioprotection is facilitated by activation of multiple kinases, including PKCalpha, PKCepsilon, and ERK, and inhibition of p38 and JNK. OBJECTIVE: Yet, the substrates of those kinases associated with LMW FGF2-induced cardioprotection against myocardial dysfunction remain to be elucidated. METHODS AND RESULTS: To identify substrates in LMW FGF2 improvement of post-ischemic cardiac function, mouse hearts expressing only LMW FGF2 were subjected to ischemia-reperfusion (I/R) injury and analyzed by a mass spectrometry (MS)-based quantitative phosphoproteomic strategy. MS analysis identified 50 phosphorylation sites from 7 sarcoendoplasmic reticulum (SR) proteins that were significantly altered in I/R-treated hearts only expressing LMW FGF2 compared to those hearts lacking FGF2. One of those phosphorylated SR proteins identified was phospholamban (PLB), which exhibited rapid, increased phosphorylation at Threonine-17 (Thr17) after I/R in hearts expressing only LMW FGF2; this was further validated using Selected Reaction Monitoring-based MS workflow. To demonstrate a mechanistic role of phospho-Thr17 PLB in LMW FGF2-mediated cardioprotection, hearts only expressing LMW FGF2 and those expressing only LMW FGF2 with a mutant PLB lacking phosphorylatable Thr17 (Thr17Ala PLB) were subjected to I/R. Hearts only expressing LMW FGF2 showed significantly improved recovery of cardiac function following I/R (p < 0.05), and this functional improvement was significantly abrogated in hearts expressing LMW FGF2 and Thr17Ala PLB (p < 0.05). CONCLUSION: The findings indicate that LMW FGF2 modulates intracellular calcium handling/cycling via regulatory changes in SR proteins essential for recovery from I/R injury, and thereby protects the heart from post-ischemic cardiac dysfunction.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Cardiotónicos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Isquemia Miocárdica/prevención & control , Isquemia Miocárdica/fisiopatología , Fosfoproteínas/metabolismo , Fosfotreonina/metabolismo , Proteómica , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Modelos Biológicos , Peso Molecular , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Retículo Sarcoplasmático/metabolismo
13.
Sci Rep ; 10(1): 10665, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606301

RESUMEN

Mitochondrial lysine acetylation regulates several metabolic pathways in cardiac cells. The current study investigated whether GCN5L1-mediated lysine acetylation regulates cardiac mitochondrial metabolic proteins in response to a high fat diet (HFD). GCN5L1 cardiac-specific knockout (cKO) mice showed significantly reduced mitochondrial protein acetylation following a HFD relative to wildtype (WT) mice. GCN5L1 cKO mice did not display any decrease in ex vivo cardiac workload in response to a HFD. In contrast, ex vivo cardiac function in HFD-fed WT mice dropped ~ 50% relative to low fat diet (LFD) fed controls. The acetylation status of electron transport chain Complex I protein NDUFB8 was significantly increased in WT mice fed a HFD, but remained unchanged in GCN5L1 cKO mice relative to LFD controls. Finally, we observed that inhibitory acetylation of superoxide dismutase 2 (SOD2) at K122 was increased in WT (but not cKO mice) on a HFD. This correlated with significantly increased cardiac lipid peroxidation in HFD-fed WT mice relative to GCN5L1 cKO animals under the same conditions. We conclude that increased GCN5L1 expression in response to a HFD promotes increased lysine acetylation, and that this may play a role in the development of reactive oxygen species (ROS) damage caused by nutrient excess.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Acetilación , Animales , Corazón/fisiología , Peroxidación de Lípido/fisiología , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
14.
Physiol Rep ; 8(8): e14400, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32323496

RESUMEN

The global burden of heart failure following myocardial ischemia-reperfusion (IR) injury is a growing problem. One pathway that is key to understanding the progression of myocardial infarction and IR injury is the endoplasmic reticulum (ER) stress pathway, which contributes to apoptosis signaling and tissue death. The role of calreticulin in the progression of ER stress remains controversial. We hypothesized that calreticulin induction drives proapoptotic signaling in response to ER stress. We find here that calreticulin is upregulated in human ischemic heart failure cardiac tissue, as well as simulated hypoxia and reoxygenation (H/R) and thapsigargin-mediated ER stress. To test the impact of direct modulation of calreticulin expression on ER stress-induced apoptosis, human cardiac-derived AC16 cells with stable overexpression or silencing of calreticulin were subjected to thapsigargin treatment, and markers of apoptosis were evaluated. It was found that overexpression of calreticulin promotes apoptosis, while a partial knockdown protects against the expression of caspase 12, CHOP, and reduces thapsigargin-driven TUNEL staining. These data shed light on the role that calreticulin plays in apoptosis signaling during ER stress in cardiac cells.


Asunto(s)
Calreticulina/biosíntesis , Estrés del Retículo Endoplásmico/fisiología , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Apoptosis/fisiología , Calreticulina/metabolismo , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Transducción de Señal
15.
Curr Res Physiol ; 3: 44-49, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34746819

RESUMEN

Changes in the acetylation status of mitochondrial proteins have been linked to the development of metabolic dysfunction in a number of tissues. Increased lysine acetylation has been reported in the hearts of obese mice, and is associated with changes in fuel metabolism, redox status, and mitochondrial oxidative phosphorylation. In this study, we examined whether diet-induced changes in the acetylation of mitochondrial acyl-CoA dehydrogenases affected fatty acid oxidation enzyme activity and contractile function in the obese mouse heart. Exposure to a long-term high fat diet in wildtype mice led to the hyperacetylation of short- and long-chain acyl-CoA dehydrogenases SCAD and LCAD, which correlated with their increased enzymatic activity in vitro. Cardiomyocyte-specific deletion of the mitochondrial acetyltransferase-related protein GCN5L1 prevented both the hyperacetylation and increased activity of these enzymes under the same conditions of dietary excess. Despite the potential for increased cardiac fatty acid oxidation activity, wildtype mice did not display any increase in cardiac contractility following exposure to a high fat diet. We conclude that the potential energetic benefits of elevated fatty acid oxidation activity are not sufficient to counter the various deleterious effects of a high fat diet on cardiac function.

16.
Biochem J ; 476(12): 1713-1724, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31138772

RESUMEN

GCN5L1 regulates protein acetylation and mitochondrial energy metabolism in diverse cell types. In the heart, loss of GCN5L1 sensitizes the myocardium to injury from exposure to nutritional excess and ischemia/reperfusion injury. This phenotype is associated with the reduced acetylation of metabolic enzymes and elevated mitochondrial reactive oxygen species (ROS) generation, although the direct molecular targets of GCN5L1 remain largely unknown. In this study, we sought to determine the mechanism by which GCN5L1 impacts energy substrate utilization and mitochondrial health. We find that hypoxia and reoxygenation (H/R) leads to a reduction in cell viability and Akt phosphorylation in GCN5L1 knockdown AC16 cardiomyocytes, in parallel with elevated glucose utilization and impaired fatty acid use. We demonstrate that glycolysis is uncoupled from glucose oxidation under normoxic conditions in GCN5L1-depleted cells. We show that GCN5L1 directly binds to the Akt-activating mTORC2 component Rictor, and that loss of Rictor acetylation is evident in GCN5L1 knockdown cells. Finally, we show that restoring Rictor acetylation in GCN5L1-depleted cells reduces mitochondrial ROS generation and increases cell survival in response to H/R. These studies suggest that GCN5L1 may play a central role in energy substrate metabolism and cell survival via the regulation of Akt/mTORC2 signaling.


Asunto(s)
Glucosa/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Muerte Celular/genética , Línea Celular , Técnicas de Silenciamiento del Gen , Glucosa/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Proteínas Mitocondriales , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Miocitos Cardíacos/patología , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-akt/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo
17.
Physiol Rep ; 7(8): e14043, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31004398

RESUMEN

Adropin is a liver- and brain-secreted peptide hormone with striking effects on fuel metabolism regulation in a number of tissues. Previous studies demonstrated that adropin secretion is decreased in obese mice subjected to a long-term high-fat diet (HFD), and that whole-body loss of adropin expression resulted in systemic insulin resistance. Treatment of obese mice with adropin improves glucose tolerance, which has been linked to increased glucose oxidation and inhibition of fatty acid utilization in isolated skeletal muscle homogenates. In this study, we used in vivo physiological measurements to determine how treatment of obese mice with adropin affects whole-body glucose metabolism. Treatment with adropin reduced fasting blood glucose and, as shown previously, increased glucose tolerance in HFD mice during standard glucose tolerance tests. Under hyperinsulinemic-euglycemic clamp conditions, adropin treatment led to a nonsignificant increase in whole-body insulin sensitivity, and a significant reduction in whole-body glucose uptake. Finally, we show that adropin treatment suppressed hepatic glucose production and improved hepatic insulin sensitivity. This correlated with reduced expression of fatty acid import proteins and gluconeogenic regulatory enzymes in the liver, suggesting that adropin treatment may impact the pathways that drive vital aspects of hepatic glucose metabolism.


Asunto(s)
Fármacos Antiobesidad/farmacología , Glucemia/metabolismo , Gluconeogénesis , Péptidos y Proteínas de Señalización Intercelular/farmacología , Hígado/metabolismo , Animales , Fármacos Antiobesidad/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología
18.
Physiol Rep ; 7(8): e14054, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31033247

RESUMEN

The mitochondrial acetyltransferase-related protein GCN5L1 controls the activity of fuel substrate metabolism enzymes in several tissues. While previous studies have demonstrated that GCN5L1 regulates fatty acid oxidation in the prediabetic heart, our understanding of its role in overt diabetes is not fully developed. In this study, we examined how hyperglycemic conditions regulate GCN5L1 expression in cardiac tissues, and modeled the subsequent effect in cardiac cells in vitro. We show that GCN5L1 abundance is significantly reduced under diabetic conditions in vivo, which correlated with reduced acetylation of known GCN5L1 fuel metabolism substrate enzymes. Treatment of cardiac cells with high glucose reduced Gcn5l1 expression in vitro, while expression of the counteracting deacetylase enzyme, Sirt3, was unchanged. Finally, we show that genetic depletion of GCN5L1 in H9c2 cells leads to reduced mitochondrial oxidative capacity under high glucose conditions. These data suggest that GCN5L1 expression is highly responsive to changes in cellular glucose levels, and that loss of GCN5L1 activity under hyperglycemic conditions impairs cardiac energy metabolism.


Asunto(s)
Acetiltransferasas/genética , Metabolismo Energético , Hiperglucemia/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , Acetiltransferasas/metabolismo , Animales , Línea Celular , Respiración de la Célula , Glucosa/metabolismo , Masculino , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Ratas , Ratas Zucker , Sirtuinas/genética , Sirtuinas/metabolismo
19.
J Mol Cell Cardiol ; 129: 174-178, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30822408

RESUMEN

Exposure to a high fat (HF) diet promotes increased fatty acid uptake, fatty acid oxidation and lipid accumulation in the heart. These maladaptive changes impact cellular energy metabolism and may promote the development of cardiac dysfunction. Attempts to increase cardiac glucose utilization have been proposed as a way to reverse cardiomyopathy in obese and diabetic individuals. Adropin is a nutrient-regulated metabolic hormone shown to promote glucose oxidation over fatty acid oxidation in skeletal muscle homogenates in vitro. The focus of the current study was to investigate whether adropin can regulate substrate metabolism in the heart following prolonged exposure to a HF diet in vivo. Mice on a long-term HF diet received serial intraperitoneal injections of vehicle or adropin over three days. Cardiac glucose oxidation was significantly reduced in HF animals, which was rescued by acute adropin treatment. Significant decreases in cardiac pyruvate dehydrogenase activity were observed in HF animals, which were also reversed by adropin treatment. In contrast to previous studies, this change was unrelated to Pdk4 expression, which remained elevated in both vehicle- and adropin-treated HF mice. Instead, we show that adropin modulated the expression of the mitochondrial acetyltransferase enzyme GCN5L1, which altered the acetylation status and activity of fuel metabolism enzymes to favor glucose utilization. Our findings indicate that adropin exposure leads to increased cardiac glucose oxidation under HF conditions, and may provide a future therapeutic avenue in the treatment of diabetic cardiomyopathy.


Asunto(s)
Glucosa/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Miocardio/metabolismo , Estado Prediabético/metabolismo , Acetilación/efectos de los fármacos , Animales , Ratones Obesos , Oxidación-Reducción/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo
20.
J Mol Cell Cardiol ; 129: 69-78, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776374

RESUMEN

GCN5L1 regulates mitochondrial protein acetylation, cellular bioenergetics, reactive oxygen species (ROS) generation, and organelle positioning in a number of diverse cell types. However, the functional role of GCN5L1 in the heart is currently unknown. As many of the factors regulated by GCN5L1 play a major role in ischemia-reperfusion (I/R) injury, we sought to determine if GCN5L1 is an important nexus in the response to cardiac ischemic stress. Deletion of GCN5L1 in cardiomyocytes resulted in impaired myocardial post-ischemic function and increased infarct development in isolated work-performing hearts. GCN5L1 knockout hearts displayed hallmarks of ROS damage, and scavenging of ROS restored cardiac function and reduced infarct volume in vivo. GCN5L1 knockdown in cardiac-derived AC16 cells was associated with reduced activation of the pro-survival MAP kinase ERK1/2, which was also reversed by ROS scavenging, leading to restored cell viability. We therefore conclude that GCN5L1 activity provides an important protection against I/R induced, ROS-mediated damage in the ischemic heart.


Asunto(s)
Eliminación de Gen , Proteínas Mitocondriales/deficiencia , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Especificidad de Órganos , Recuperación de la Función , Animales , Regulación hacia Abajo/genética , Femenino , Depuradores de Radicales Libres/metabolismo , Humanos , Masculino , Ratones Noqueados , Persona de Mediana Edad , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...