Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1444: 33-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467971

RESUMEN

Since its discovery, Aire has been the topic of numerous studies in its role as a transcriptional regulator in the thymus where it promotes the "promiscuous" expression of a large repertoire of tissue-restricted antigens (TRAs) that are normally expressed only in the immune periphery. This process occurs in specialized medullary thymic epithelial cells (mTECs) and mediates the elimination of self-reactive T cells or promotes their conversion to the Foxp3+ regulatory T cell lineage, both of which are required for the prevention of autoimmunity. In recent years, there has been increasing interest in the role of extrathymic Aire expression in peripheral organs. The focus has primarily been on the identification of the cellular source(s) and mechanism(s) by which extrathymic AIRE affects tolerance-related or other physiological processes. A cadre of OMICs tools including single cell RNA sequencing and novel transgenic models to trace Aire expression to perform lineage tracing experiments have shed light on a phenomenon that is more complex than previously thought. In this chapter, we provide a deeper analysis of how extrathymic Aire research has developed and progressed, how cellular sources were identified, and how the function of AIRE was determined. Current data suggests that extrathymic AIRE fulfills a function that differs from what has been observed in the thymus and strongly argues that its main purpose is to regulate transcriptional programs in a cell content-dependent manner. Surprisingly, there is data that also suggests a non-transcriptional role of extrathymic AIRE in the cytoplasm. We have arrived at a potential turning point that will take the field from the classical understanding of AIRE as a transcription factor in control of TRA expression to its role in immunological and non-immunological processes in the periphery.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Timo , Autoinmunidad , Antígenos , Células Epiteliales/metabolismo
2.
Front Cell Dev Biol ; 11: 1295452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078006

RESUMEN

Actin is a multi-functional protein that is involved in numerous cellular processes including cytoskeleton regulation, cell migration, and cellular integrity. In these processes, actin's role in respect to its structure, complex mechanical, and protein-binding properties has been studied primarily in the cytoplasmic and cellular membrane compartments. However, its role in somatic cell nuclei has recently become evident where it participates in transcription, chromatin remodeling, and DNA damage repair. What remains enigmatic is the involvement of nuclear actin in physiological processes that lead to the generation of germ cells, in general, and primary spermatocytes, in particular. Here, we will discuss the possible role and nuclear localization of actin during meiotic prophase I and its interaction with chromatin remodeling complexes, the latter being essential for the control of pairing of homologous chromosomes, cross-over formation, and recombination. It is our hope that this perspective article will extend the scope of actin's nuclear function in germ cells undergoing meiotic division.

3.
Mucosal Immunol ; 16(4): 373-385, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36739089

RESUMEN

Interleukin (IL)-17 protects epithelial barriers by inducing the secretion of antimicrobial peptides. However, the effect of IL-17 on Paneth cells (PCs), the major producers of antimicrobial peptides in the small intestine, is unclear. Here, we show that the targeted ablation of the IL-17 receptor (IL-17R) in PCs disrupts their antimicrobial functions and decreases the frequency of ileal PCs. These changes become more pronounced after colonization with IL-17 inducing segmented filamentous bacteria. Mice with PCs that lack IL-17R show an increased inflammatory transcriptional profile in the ileum along with the severity of experimentally induced ileitis. These changes are associated with a decrease in the diversity of gut microbiota that induces a severe ileum pathology upon transfer to genetically susceptible mice, which can be prevented by the systemic administration of IL-17a/f in microbiota recipients. In an exploratory analysis of a small cohort of pediatric patients with Crohn's disease, we have found that a portion of these patients exhibits a low number of lysozyme-expressing ileal PCs and a high ileitis severity score, resembling the phenotype of mice with IL-17R-deficient PCs. Our study identifies IL-17R-dependent signaling in PCs as an important mechanism that maintains ileal homeostasis through the prevention of dysbiosis.


Asunto(s)
Ileítis , Microbiota , Receptores de Interleucina-17 , Animales , Niño , Humanos , Ratones , Péptidos Antimicrobianos , Disbiosis/microbiología , Ileítis/microbiología , Íleon/microbiología , Inflamación/patología , Interleucina-17 , Células de Paneth/patología , Receptores de Interleucina-17/genética
4.
Cells ; 11(19)2022 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-36231130

RESUMEN

Male infertility affects approximately 14% of all European men, of which ~44% are characterized as idiopathic. There is an urgency to identify the factors that affect male fertility. One such factor, Autoimmune Regulator (AIRE), a protein found in the thymus, has been studied in the context of central tolerance functioning as a nuclear transcription modulator, responsible for the expression of tissue-restricted antigens in specialized thymic cells that prevent autoimmunity. While its expression in the testes remains enigmatic, we recently observed that sterility in mice correlates with the absence of Aire in the testes, regardless of the deficient expression in medullary thymic epithelial cells or cells of the hematopoietic system. By assessing the Aire transcript levels, we discovered that Sertoli cells are the exclusive source of Aire in the testes, where it most likely plays a non-immune role, suggesting an unknown mechanism by which testicular Aire regulates fertility. Here, we discuss these results in the context of previous reports which have suggested that infertility observed in Aire deficient mice is of an autoimmune aetiology. We present an alternative point of view for the role of Aire in testes in respect to fertility altering the perspective of how Aire's function in the testes is currently perceived.


Asunto(s)
Autoinmunidad , Células Epiteliales , Animales , Núcleo Celular , Células Epiteliales/metabolismo , Fertilidad , Masculino , Ratones
5.
Front Cell Dev Biol ; 10: 972017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158203

RESUMEN

Sertoli cells (SCs) are the only somatic cells that reside in seminiferous tubules of testis. They directly interact with and support the development of germ cells, thus have an indispensable role in the process of spermatogenesis. SCs first appear in a proliferative state and then, with the initiation of the first wave of spermatogenesis, progress to a mature "nurturing" state which supports lifelong continuous sperm production. During this development, the SC transcriptome must adapt rapidly as obstacles in SC maturation often result in deficiencies in male fertility. Due to its importance in spermatogenesis, a reliable, rapid, and precise method for the isolation of high purity, viable and unadulterated SC has been largely missing. We have developed an improved method for the preparation of a testicular single cell suspension comprised of two alternative protocols to separate SCs from the rest of the testicular cells by FACS. The first sorting scheme is based on their co-expression of surface specific markers, FSHr and Occludin-1, while the second focuses on the co-staining of SCs with FSHr-specific antibody and Hoechst 33342, which discriminates DNA content of testicular cells. The entire procedure can be completed in less than 3 h which permits the analysis of the development-related transcriptional profile of these cells. Notably, our comparative study showed that this method resulted in a SC transcriptome that is largely comparable to SCs which were briskly isolated due to their cell-specific expression of fluorescent protein. Interestingly, we also show that SCs sorted as FSHr+Occludin+ cells contained a tangible portion of transcripts from all types of testicular germ cells. Sorting of SCs according to their 2C DNA content significantly reduced the presence of these transcripts, thus seems to be the most suitable approach for accurate determination of the SC transcriptome. We believe that these novel approaches for the isolation of SCs will assist researchers in the elucidation of their function as well as their role in spermatogenesis and disorders related to male infertility.

6.
Elife ; 112022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099391

RESUMEN

Medullary thymic epithelial cells (mTECs), which produce and present self-antigens, are essential for the establishment of central tolerance. Since mTEC numbers are limited, their function is complemented by thymic dendritic cells (DCs), which transfer mTEC-produced self-antigens via cooperative antigen transfer (CAT). While CAT is required for effective T cell selection, many aspects remain enigmatic. Given the recently described heterogeneity of mTECs and DCs, it is unclear whether the antigen acquisition from a particular TEC subset is mediated by preferential pairing with a specific subset of DCs. Using several relevant Cre-based mouse models that control for the expression of fluorescent proteins, we have found that, in regards to CAT, each subset of thymic DCs preferentially targets a distinct mTEC subset(s). Importantly, XCR1+-activated DC subset represented the most potent subset in CAT. Interestingly, thymic DCs can also acquire antigens from more than one mTEC, and of these, monocyte-derived dendritic cells (moDCs) were determined to be the most efficient. moDCs also represented the most potent DC subset in the acquisition of antigen from other DCs. These findings suggest a preferential pairing model for the distribution of mTEC-derived antigens among distinct populations of thymic DCs.


Asunto(s)
Presentación de Antígeno/inmunología , Autoantígenos/metabolismo , Tolerancia Inmunológica , Timo/inmunología , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Timo/citología
7.
Front Immunol ; 7: 449, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833610

RESUMEN

The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases, Lck. Upon T-cell antigen receptor (TCR) triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, receptor for activated C kinase 1 (RACK1), was chosen as a viable option, and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant, and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1-Lck complexes were detectable in primary CD4+ T-cells with their maximum levels peaking 10 s after TCR-CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394Lck, which co-purifies with high molecular weight cellular fractions. The formation of RACK1-Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1-pY394Lck-α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4+ T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation of RACK1-Lck complexes. Importantly, activation-induced Lck redistribution was diminished in primary CD4+ T-cells by an adenoviral-mediated knockdown of RACK1. These results demonstrate that in T cells, RACK1, as an essential component of the multiprotein complex which upon TCR engagement, links the binding of kinase active Lck to elements of the cytoskeletal network and affects the subcellular redistribution of Lck.

8.
Front Plant Sci ; 7: 234, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973677

RESUMEN

Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here, we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph, and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented toward the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. Super-resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes.

9.
Immunol Cell Biol ; 93(4): 384-95, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25420722

RESUMEN

The initiation of T-cell receptor (TCR) signaling, based on the cobinding of TCR and CD4-Lck heterodimer to a peptide-major histocompatibility complex II on antigen presenting cells, represents a classical model of T-cell signaling. What is less clear however, is the mechanism which translates TCR engagement to the phosphorylation of immunoreceptor tyrosine-based activation motifs on CD3 chains and how this event is coupled to the delivery of Lck function. Recently proposed 'standby model of Lck' posits that resting T-cells contain an abundant pool of constitutively active Lck (pY394(Lck)) required for TCR triggering, and this amount, upon TCR engagement, remains constant. Here, we show that although maintenance of the limited pool of pY394(Lck) is necessary for the generation of TCR proximal signals in a time-restricted fashion, the total amount of this pool, ~2%, is much smaller than previously reported (~40%). We provide evidence that this dramatic discrepancy in the content of pY394(Lck)is likely the consequence of spontaneous phosphorylation of Lck that occurred after cell solubilization. Additional discrepancies can be accounted for by the sensitivity of different pY394(Lck)-specific antibodies and the type of detergents used. These data suggest that reagents and conditions used for the quantification of signaling parameters must be carefully validated and interpreted. Thus, the limited size of pY394(Lck) pool in primary T-cells invites a discussion regarding the adjustment of the quantitative parameters of the standby model of Lck and reevaluation of the mechanism by which this pool contributes to the generation of proximal TCR signaling.


Asunto(s)
Artefactos , Fraccionamiento Celular/métodos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Animales , Benzoquinonas/farmacología , Humanos , Células Jurkat , Lactamas Macrocíclicas/farmacología , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Tirosina Quinasa ZAP-70/metabolismo
10.
Front Immunol ; 3: 155, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701458

RESUMEN

In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.

11.
Immunol Lett ; 142(1-2): 64-74, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22281390

RESUMEN

Lck is the principal signal-generating tyrosine kinase of the T cell activation mechanism. We have previously demonstrated that induced Lck activation outside of lipid rafts (LR) results in the rapid translocation of a fraction of Lck to LR. While this translocation predicates the subsequent production of IL-2, the mechanism underpinning this process is unknown. Here, we describe the main attributes of this translocating pool of Lck. Using fractionation of Brij58 lysates, derived from primary naive non-activated CD4(+) T cells, we show that a significant portion of Lck is associated with high molecular weight complexes representing a special type of detergent-resistant membranes (DRMs) of relatively high density and sensitivity to laurylmaltoside, thus called heavy DRMs. TcR/CD4 coaggregation-mediated activation resulted in the redistribution of more than 50% of heavy DRM-associated Lck to LR in a microtubular network-dependent fashion. Remarkably, in non-activated CD4(+) T-cells, only heavy DRM-associated Lck is phosphorylated on its activatory tyrosine 394 and this pool of Lck is found to be membrane confined with CD45 phosphatase. These data are the first to illustrate a lipid microdomain-based mechanism concentrating the preactivated pool of cellular Lck and supporting its high stoichiometry of colocalization with CD45 in CD4(+) T cells. They also provide a new structural framework to assess the mechanism underpinning the compartmentalization of critical signaling elements and regulation of spatio-temporal delivery of Lck function during the T cell proximal signaling.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Microdominios de Membrana/metabolismo , Transducción de Señal , Animales , Membrana Celular/metabolismo , Centrifugación por Gradiente de Densidad , Detergentes/farmacología , Activación Enzimática , Femenino , Antígenos Comunes de Leucocito/metabolismo , Activación de Linfocitos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/inmunología , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas
12.
Immunology ; 123(2): 218-27, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17725605

RESUMEN

Epigenetic events play an important role in tumour progression and also contribute to escape of the tumour from immune surveillance. In this study, we investigated the up-regulation of major histocompatibility complex (MHC) class I surface expression on tumour cells by epigenetic mechanisms using a murine tumour cell line expressing human E6 and E7 human papilloma virus 16 (HPV16) oncogenes and deficient in MHC class I expression, as a result of impaired antigen-presenting machinery (APM). Treatment of the cells with the histone deacetylase inhibitor Trichostatin A, either alone or in combination with the DNA demethylating agent 5-azacytidine, induced surface re-expression of MHC class I molecules. Consequently, the treated cells became susceptible to lysis by specific cytotoxic T lymphocytes. Further analysis revealed that epigenetic induction of MHC class I surface expression was associated with the up-regulation of APM genes [transporter associated with antigen processing 1 (TAP-1), TAP-2, low-molecular-mass protein 2 (LMP-2) and LMP-7]. The results demonstrate that expression of the genes involved in APM are modulated by epigenetic mechanisms and suggest that agents modifying DNA methylation and/or histone acetylation have the potential to change the effectiveness of antitumour immune responses and therapeutically may have an impact on immunological output.


Asunto(s)
Epigénesis Genética/inmunología , Genes MHC Clase I , Papillomavirus Humano 16 , Neoplasias Experimentales/inmunología , Infecciones por Papillomavirus/complicaciones , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Apoptosis/efectos de los fármacos , Azacitidina/farmacología , Inhibidores Enzimáticos/farmacología , Histonas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/genética , Neoplasias Experimentales/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Células Tumorales Cultivadas , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología
13.
Cancer Res ; 66(12): 6361-9, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16778214

RESUMEN

Optimal reexpression of most genes silenced through promoter methylation requires the sequential application of DNA methyltransferase inhibitors followed by histone deacetylase inhibitors in tumor cell cultures. Patients with myelodysplastic syndrome or acute myeloid leukemia (AML) were treated with the methyltransferase inhibitor 5-azacitidine (aza-CR) followed by the histone deacetylase inhibitor sodium phenylbutyrate. Major responses associated with cytogenetic complete response developed in patients receiving prolonged dosing schedules of aza-CR. Bisulfite sequencing of the p15 promoter in marrow DNA during the first cycle of treatment showed heterogeneous allelic demethylation in three responding patients, suggesting ongoing demethylation within the tumor clone, but no demethylation in two nonresponders. Six of six responding patients with pretreatment methylation of p15 or CDH-1 promoters reversed methylation during the first cycle of therapy (methylation-specific PCR), whereas none of six nonresponders showed any demethylation. Gene demethylation correlated with the area under the aza-CR plasma concentration-time curve. Administration of both drugs was associated with induction of acetylation of histones H3 and H4. This study provides the first demonstration that molecular mechanisms responsible for responses to DNA methyltransferase/histone deacetylase inhibitor combinations may include reversal of aberrant epigenetic gene silencing. The promising percentage of major hematologic responses justifies the testing of such combinations in prospective randomized trials.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas , Leucemia Mieloide/tratamiento farmacológico , Leucemia Mieloide/enzimología , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/enzimología , Acetilación/efectos de los fármacos , Enfermedad Aguda , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Azacitidina/administración & dosificación , Azacitidina/efectos adversos , Azacitidina/farmacocinética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estudios de Factibilidad , Femenino , Histona Desacetilasas/genética , Histonas/metabolismo , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Fenilbutiratos/administración & dosificación , Fenilbutiratos/efectos adversos , Fenilbutiratos/farmacocinética , Regiones Promotoras Genéticas , Resultado del Tratamiento
14.
Cancer Biol Ther ; 3(12): 1304-12, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15662126

RESUMEN

Absence of the estrogen receptor alpha (ER) in human breast cancer cells is an indicator of poor prognosis, and predictive of lack of response to hormonal therapy. Previous studies in our laboratory and others have shown that epigenetic regulation, including DNA methylation and histone deacetylation, are common mechanisms leading to ER gene silencing. Through the use of pharmacologic inhibitors, 5-aza 2'deoxycytidine (AZA) and Trichostatin A (TSA), we have shown that alterations in both of these mechanisms results in synergistic reexpression of ER mRNA and functional protein. These alterations may play a larger role in stimulation of cell signaling pathways leading to ER expression. We have utilized newly developed genome wide screening microarray techniques to identify gene(s) contributing to the hormone independent phenotype and AZA/TSA mediated ER expression. From this screen, we identified and confirmed expression of 4 candidate genes (PP2A, XCL1, THY1 and NBC4) as potential regulators of the hormone independent phenotype. Expression of two genes, XCL1 and PP2A, appeared to be correlated with ER expression. PP2A expression was not changed with ER degradation using ICI 182,780 whereas XCL1 expression decreased in the presence of AZA/TSA and ICI 182,780. This suggests that PP2A may be a determinant of ER expression while XCL1 appears to be ER responsive and downstream of ER expression. These gene products may be novel targets to be further explored in the development of new therapeutics for ER negative breast cancer.


Asunto(s)
Azacitidina/análogos & derivados , Neoplasias de la Mama/genética , Metilación de ADN , Epigénesis Genética , Receptor alfa de Estrógeno/genética , Linfocinas/genética , Fosfoproteínas Fosfatasas/genética , Sialoglicoproteínas/genética , Acetilación/efectos de los fármacos , Azacitidina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Quimiocinas C , Metilasas de Modificación del ADN/antagonistas & inhibidores , Decitabina , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas , Humanos , Ácidos Hidroxámicos , Linfocinas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 2 , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sialoglicoproteínas/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...