Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 7: 559120, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154975

RESUMEN

Biofortification through plant breeding is a cost-effective and sustainable approach towards addressing micronutrient malnutrition prevailing across the globe. Screening cultivars for micronutrient content and identification of quantitative trait loci (QTLs)/genes and markers help in the development of biofortified varieties in chickpea (Cicer arietinum L.). With the aim of identifying the genomic regions controlling seed Fe and Zn concentrations, the F2:3 population derived from a cross between MNK-1 and Annigeri 1 was genotyped using genotyping by sequencing approach and evaluated for Fe and Zn concentration. An intraspecific genetic linkage map comprising 839 single nucleotide polymorphisms (SNPs) spanning a total distance of 1,088.04 cM with an average marker density of 1.30 cM was constructed. By integrating the linkage map data with the phenotypic data of the F2:3 population, a total of 11 QTLs were detected for seed Fe concentration on CaLG03, CaLG04, and CaLG05, with phenotypic variation explained ranging from 7.2% (CaqFe3.4) to 13.4% (CaqFe4.2). For seed Zn concentration, eight QTLs were identified on CaLG04, CaLG05, and CaLG08. The QTLs individually explained phenotypic variations ranging between 5.7% (CaqZn8.1) and 13.7% (CaqZn4.3). Three QTLs for seed Fe and Zn concentrations (CaqFe4.4, CaqFe4.5, and CaqZn4.1) were colocated in the "QTL-hotspot" region on CaLG04 that harbors several drought tolerance-related QTLs. We identified genes in the QTL regions that encode iron-sulfur metabolism and zinc-dependent alcohol dehydrogenase activity on CaLG03, iron ion binding oxidoreductase on CaLG04, and zinc-induced facilitator-like protein and ZIP zinc/iron transport family protein on CaLG05. These genomic regions and the associated markers can be used in marker-assisted selection to increase seed Fe and Zn concentrations in agronomically superior chickpea varieties.

2.
Mol Breed ; 39(1): 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30631246

RESUMEN

Annigeri 1 and JG 74 are elite high yielding desi cultivars of chickpea with medium maturity duration and extensively cultivated in Karnataka and Madhya Pradesh, respectively. Both cultivars, in recent years, have become susceptible to race 4 of Fusarium wilt (FW). To improve Annigeri 1 and JG 74, we introgressed a genomic region conferring resistance against FW race 4 (foc4) through marker-assisted backcrossing using WR 315 as the donor parent. For foreground selection, TA59, TA96, TR19 and TA27 markers were used at Agricultural Research Station, Kalaburagi, while GA16 and TA96 markers were used at Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur. Background selection using simple sequence repreats (SSRs) for the cross Annigeri 1 × WR 315 in BC1F1 and BC2F1 lines resulted in 76-87% and 90-95% recurrent parent genome recovery, respectively. On the other hand, 90-97% genome was recovered in BC3F1 lines in the case of cross JG 74 × WR 315. Multilocation evaluation of 10 BC2F5 lines derived from Annigeri 1 provided one superior line referred to as Super Annigeri 1 with 8% increase in yield and enhanced disease resistance over Annigeri 1. JG 74315-14, the superior line in JG 74 background, had a yield advantage of 53.5% and 25.6% over the location trial means in Pantnagar and Durgapura locations, respectively, under Initial Varietal Trial of All India Coordinated Research Project on Chickpea. These lines with enhanced resistance and high yield performance are demonstration of successful deployment of molecular breeding to develop superior lines for FW resistance in chickpea.

3.
Biotechnol Adv ; 31(8): 1120-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23313999

RESUMEN

Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries.


Asunto(s)
Cruzamiento , Fabaceae , Marcadores Genéticos , Genoma de Planta , Genómica , Transcriptoma , Mapeo Cromosómico , Productos Agrícolas , Clima Tropical
4.
J Exp Bot ; 58(2): 187-94, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17088363

RESUMEN

Variation in osmotic adjustment (OA) among chickpea (Cicer arietinum L.) cultivars has been observed when exposed to terminal drought, but some studies suggest that this benefits yield while others suggest it does not benefit yield in water-limited environments. In the present study, parents differing in OA were crossed and a set of advanced breeding lines (ABLs) developed for yield testing. The variation in OA during podding was measured under terminal drought in the F(2), F(3), F(7), and F(8) progeny and in the parents by either rehydrating the leaves before sampling for osmotic potential (OP) or by measuring the relative water content (RWC) and OP on adjacent leaves for the calculation of the OP at full turgor. Yields were measured in the F(8) progeny under terminal drought in Australia and India. While differences in OA were measured in the chickpea lines and parents, OA varied from year to year and did not consistently benefit yield when measured in the field under terminal drought. In Australia, differences in OA were not associated with any yield benefit in any year, while in India early flowering resulted in higher yields at three of the four sites, and OA had an inconsistent effect on seed yields. A comparison of OP at full turgor measured after rehydration and from measurements of RWC and OP showed that the rehydration technique underestimated OA. The lack of contribution of OA to yield of chickpea is discussed.


Asunto(s)
Cicer/fisiología , Presión Osmótica , Agua/metabolismo , Australia , Cruzamiento , Cicer/genética , Desastres , Ambiente Controlado , India , Hojas de la Planta/fisiología , Semillas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...