Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 23(22): 4876-4887, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37870483

RESUMEN

While injection molding is becoming the fabrication modality of choice for high-scale production of microfluidic devices, especially those used for in vitro diagnostics, its translation into the growing area of nanofluidics (structures with at least one dimension <100 nm) has not been well established. Another prevailing issue with injection molding is the high startup costs and the relatively long time between device iterations making it in many cases impractical for device prototyping. We report, for the first time, functional nanofluidic devices with dimensions of critical structures below 30 nm fabricated by injection molding for the manipulation, identification, and detection of single molecules. UV-resin molds replicated from Si masters served as mold inserts, negating the need for generating Ni-mold inserts via electroplating. Using assembled devices with a cover plate via hybrid thermal fusion bonding, we demonstrated two functional thermoplastic nanofluidic devices. The first device consisted of dual in-plane nanopores placed at either end of a nanochannel and was used to detect and identify single ribonucleotide monophosphate molecules via resistive pulse sensing and obtain the effective mobility of the molecule through nanoscale electrophoresis to allow its identification. The second device demonstrated selective binding of a single RNA molecule to a solid phase bioreactor decorated with a processive exoribonuclease, XRN1. Our results provide a simple path towards the use of injection molding for device prototyping in the development stage of any nanofluidic or even microfluidic application, through which rapid scale-up is made possible by transitioning from prototyping to high throughput production using conventional Ni mold inserts.


Asunto(s)
Técnicas Analíticas Microfluídicas , Nanoporos , Nanotecnología , Microfluídica , Reactores Biológicos
2.
Flow (Camb) ; 22022.
Artículo en Inglés | MEDLINE | ID: mdl-35936867

RESUMEN

Most medical diagnostic tests are expensive, involve slow turnaround times from centralized laboratories and require highly specialized equipment with seasoned technicians to carry out the assay. To facilitate realization of precision medicine at the point of care, we have developed a mixed-scale nanosensor chip featuring high surface area pillar arrays where solid-phase reactions can be performed to detect and identify nucleic acid targets found in diseased patients. Products formed can be identified and detected using a polymer nanofluidic channel. To guide delivery of this platform, we discuss the operation of various components of the device and simulations (COMSOL) used to guide the design by investigating parameters such as pillar array loading, and hydrodynamic and electrokinetic flows. The fabrication of the nanosensor is discussed, which was performed using a silicon (Si) master patterned with a combination of focused ion beam milling and photolithography with deep reactive ion etching. The mixed-scale patterns were transferred into a thermoplastic via thermal nanoimprint lithography, which facilitated fabrication of the nanosensor chip making it appropriate for in vitro diagnostics. The results from COMSOL were experimentally verified for hydrodynamic flow using Rhodamine B as a fluorescent tracer and electrokinetic flow using single fluorescently labelled oligonucleotides (single-stranded DNAs, ssDNAs).

3.
ACS Sens ; 6(8): 3133-3143, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34406743

RESUMEN

We report a simple method for tailoring the size of in-plane nanopores fabricated in thermoplastics for single-molecule sensing. The in-plane pores were fabricated via nanoimprint lithography (NIL) from resin stamps, which were generated from Si masters. We could reduce the size of the in-plane nanopores from 30 to ∼10 nm during the thermal fusion bonding (TFB) step, which places a cover plate over the imprinted polymer substrate under a controlled pressure and temperature to form the relevant nanofluidic devices. Increased pressures during TFB caused the cross-sectional area of the in-plane pore to be reduced. The in-plane nanopores prepared with different TFB pressures were utilized to detect single-λ-DNA molecules via resistive pulse sensing, which showed a higher current amplitude in devices bonded at higher pressures. Using this method, we also show the ability to tune the pore size to detect single-stranded (ss) RNA molecules and single ribonucleotide adenosine monophosphate (rAMP). However, due to the small size of the pores required for detection of the ssRNA and rAMPs, the surface charge arising from carboxylate groups generated during O2 plasma oxidation of the surfaces of the nanopores to make them wettable had to be reduced to allow translocation of coions. This was accomplished using EDC/NHS coupling chemistry and ethanolamine. This simple modification chemistry increased the event frequency from ∼1 s-1 to >136 s-1 for an ssRNA concentration of 100 nM.


Asunto(s)
Nanoporos , ADN , Nanotecnología , Polímeros , Temperatura
4.
Nanotechnology ; 29(11): 115501, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29319001

RESUMEN

An enzyme-free glucose sensor based on vertically grown zinc oxide nanorods (NRs) functionalized with ferric oxide (Fe2O3) is investigated. The well-aligned and high density ZnO NRs were synthesized on an FTO/glass substrate by a sol-gel and hydrothermal growth method. A dip-coating technique was utilized to modify the surface of the as-grown ZnO NRs with Fe2O3. The immobilized surface was coated with a layer of nafion membrane. The fabricated glucose sensor was characterized amperometrically at room temperature using three electrodes stationed in the phosphate buffer solution, where ZnO NRs/Fe2O3/nafion membrane was the sensing or working electrode, and platinum plate and silver/silver chloride were used as the counter and reference electrodes, respectively. The proposed non-enzymatic and modified glucose sensor exhibited a high sensitivity in the order of 0.052 µA cm-2 (mg/dL)-1, a lower detection limit of around 0.95 mmol L-1, a sharp and fast response time of ∼1 s, and a linear response to changes in glucose concentrations from 100-400 mg dL-1. The linear amperometric response of the sensor covers the physiological and clinical interest of glucose levels for diabetic patients. The device continues to function accurately after multiple measurements with a good reproducibility. The proposed glucose sensor is expected to be used clinically for in vivo monitoring of glucose.


Asunto(s)
Compuestos Férricos/química , Glucosa/análisis , Nanotubos/química , Óxido de Zinc/química , Electrodos , Polímeros de Fluorocarbono/química , Nanotubos/ultraestructura , Reproducibilidad de los Resultados , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA