Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(11): 4608-4615, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35536749

RESUMEN

Monolayer hexagonal boron nitride (hBN) has attracted interest as an ultrathin tunnel barrier or environmental protection layer. Recently, wafer-scale hBN growth on Cu(111) was developed for semiconductor chip applications. For basic research and technology, understanding how hBN perturbs underlying electronically active layers is critical. Encouragingly, hBN/Cu(111) has been shown to preserve the Cu(111) surface state (SS), but it was unknown how tunneling into this SS through hBN varies spatially. Here, we demonstrate that the Cu(111) SS under wafer-scale hBN is homogeneous in energy and spectral weight over nanometer length scales and across atomic terraces. In contrast, a new spectral feature─not seen on bare Cu(111)─varies with atomic registry and shares the spatial periodicity of the hBN/Cu(111) moiré. This work demonstrates that, for some 2D electron systems, an hBN overlayer can act as a protective yet remarkably transparent window on fragile low-energy electronic structure below.


Asunto(s)
Compuestos de Boro , Semiconductores , Compuestos de Boro/química , Electrónica
2.
Proc Natl Acad Sci U S A ; 118(16)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846248

RESUMEN

Spatial disorder has been shown to drive two-dimensional (2D) superconductors to an insulating phase through a superconductor-insulator transition (SIT). Numerical calculations predict that with increasing disorder, emergent electronic granularity is expected in these materials-a phenomenon where superconducting (SC) domains on the scale of the material's coherence length are embedded in an insulating matrix and coherently coupled by Josephson tunneling. Here, we present spatially resolved scanning tunneling spectroscopy (STS) measurements of the three-dimensional (3D) superconductor BaPb1-x Bi x O3 (BPBO), which surprisingly demonstrate three key signatures of emergent electronic granularity, having only been previously conjectured and observed in 2D thin-film systems. These signatures include the observation of emergent SC domains on the scale of the coherence length, finite energy gap over all space, and strong enhancement of spatial anticorrelation between pairing amplitude and gap magnitude as the SIT is approached. These observations are suggestive of 2D SC behavior embedded within a conventional 3D s-wave host, an intriguing but still unexplained interdimensional phenomenon, which has been hinted at by previous experiments in which critical scaling exponents in the vicinity of a putative 3D quantum phase transition are consistent only with dimensionality d = 2.

3.
Nat Commun ; 10(1): 5588, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811123

RESUMEN

Atomic manipulation techniques have provided a bottom-up approach to investigating the unconventional properties and complex phases of strongly correlated electron materials. By engineering artificial systems containing tens to thousands of atoms with tailored electronic or magnetic properties, it has become possible to explore how quantum many-body effects emerge as the size of a system is increased from the nanoscale to the mesoscale. Here we investigate both theoretically and experimentally the quantum engineering of nanoscale Kondo lattices - Kondo droplets - exemplifying nanoscopic replicas of heavy-fermion materials. We demonstrate that by changing a droplet's real-space geometry, we can not only create coherently coupled Kondo droplets whose properties asymptotically approach those of a quantum-coherent Kondo lattice, but also markedly increase or decrease the droplet's Kondo temperature. Furthermore we report on the discovery of a new quantum phenomenon - the Kondo echo - a signature of droplets containing Kondo holes functioning as direct probes of spatially extended, quantum-coherent Kondo cloud correlations.

4.
Nano Lett ; 17(1): 97-103, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28026959

RESUMEN

In this work we present unique signatures manifested by the local electronic properties of the topological surface state in Bi2Te3 nanostructures as the spatial limit is approached. We concentrate on the pure nanoscale limit (nanoplatelets) with spatial electronic resolution down to 1 nm. The highlights include strong dependencies on nanoplatelet size: (1) observation of a phase separation of Dirac electrons whose length scale decreases as the spatial limit is approached, and (2) the evolution from heavily n-type to lightly n-type surface doping as nanoplatelet thickness increases. Our results show a new approach to tune the Dirac point together with reduction of electronic disorder in topological insulator (TI) nanostructured systems. We expect our work will provide a new route for application of these nanostructured Dirac systems in electronic devices.

6.
Nat Mater ; 15(1): 48-53, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26552057

RESUMEN

As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.

8.
Nat Commun ; 6: 7381, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26088550

RESUMEN

The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial strain can embed wide band gap variations overlapping the visible light spectrum, with calculations showing the modified electronic potential emanating from point-induced tensile strain perturbations mimics the Coulomb potential in a mesoscopic atom. Here we realize and confirm this 'artificial atom' concept via capillary-pressure-induced nanoindentation of monolayer molybdenum disulphide from a tailored nanopattern, and demonstrate that a synthetic superlattice of these building blocks forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei. Such two-dimensional semiconductors with spatially textured band gaps represent a new class of materials, which may find applications in next-generation optoelectronics or photovoltaics.

9.
Nat Commun ; 5: 4877, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25202942

RESUMEN

The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p-n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a diamantane-C60 conjugate. By linking both sp(3) (diamondoid) and sp(2) (fullerene) carbon allotropes, this hybrid molecule opposingly pairs negative and positive electron affinities. The single-molecule conductances of self-assembled domains on Au(111), probed by low-temperature scanning tunnelling microscopy and spectroscopy, reveal a large rectifying response of the molecular constructs. This specific electronic behaviour is postulated to originate from the electrostatic repulsion of diamantane-C60 molecules due to positively charged terminal hydrogen atoms on the diamondoid interacting with the top electrode (scanning tip) at various bias voltages. Density functional theory computations scrutinize the electronic and vibrational spectroscopic fingerprints of this unique molecular structure and corroborate the unconventional rectification mechanism.

10.
Nat Nanotechnol ; 8(9): 625-33, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24002076

RESUMEN

Artificial honeycomb lattices offer a tunable platform for studying massless Dirac quasiparticles and their topological and correlated phases. Here we review recent progress in the design and fabrication of such synthetic structures focusing on nanopatterning of two-dimensional electron gases in semiconductors, molecule-by-molecule assembly by scanning probe methods and optical trapping of ultracold atoms in crystals of light. We also discuss photonic crystals with Dirac cone dispersion and topologically protected edge states. We emphasize how the interplay between single-particle band-structure engineering and cooperative effects leads to spectacular manifestations in tunnelling and optical spectroscopies.

11.
Nature ; 483(7389): 306-10, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22422264

RESUMEN

The observation of massless Dirac fermions in monolayer graphene has generated a new area of science and technology seeking to harness charge carriers that behave relativistically within solid-state materials. Both massless and massive Dirac fermions have been studied and proposed in a growing class of Dirac materials that includes bilayer graphene, surface states of topological insulators and iron-based high-temperature superconductors. Because the accessibility of this physics is predicated on the synthesis of new materials, the quest for Dirac quasi-particles has expanded to artificial systems such as lattices comprising ultracold atoms. Here we report the emergence of Dirac fermions in a fully tunable condensed-matter system-molecular graphene-assembled by atomic manipulation of carbon monoxide molecules over a conventional two-dimensional electron system at a copper surface. Using low-temperature scanning tunnelling microscopy and spectroscopy, we embed the symmetries underlying the two-dimensional Dirac equation into electron lattices, and then visualize and shape the resulting ground states. These experiments show the existence within the system of linearly dispersing, massless quasi-particles accompanied by a density of states characteristic of graphene. We then tune the quantum tunnelling between lattice sites locally to adjust the phase accrual of propagating electrons. Spatial texturing of lattice distortions produces atomically sharp p-n and p-n-p junction devices with two-dimensional control of Dirac fermion density and the power to endow Dirac particles with mass. Moreover, we apply scalar and vector potentials locally and globally to engender topologically distinct ground states and, ultimately, embedded gauge fields, wherein Dirac electrons react to 'pseudo' electric and magnetic fields present in their reference frame but absent from the laboratory frame. We demonstrate that Landau levels created by these gauge fields can be taken to the relativistic magnetic quantum limit, which has so far been inaccessible in natural graphene. Molecular graphene provides a versatile means of synthesizing exotic topological electronic phases in condensed matter using tailored nanostructures.

12.
ACS Nano ; 4(12): 7524-30, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21121692

RESUMEN

Owing to its unique electronic properties, graphene has recently attracted wide attention in both the condensed matter physics and microelectronic device communities. Despite intense interest in this material, an industrially scalable graphene synthesis process remains elusive. Here, we demonstrate a high-throughput, low-temperature, spatially controlled and scalable epitaxial graphene (EG) synthesis technique based on laser-induced surface decomposition of the Si-rich face of a SiC single-crystal. We confirm the formation of EG on SiC as a result of excimer laser irradiation by using reflection high-energy electron diffraction (RHEED), Raman spectroscopy, synchrotron-based X-ray diffraction, transmission electron microscopy (TEM), and scanning tunneling microscopy (STM). Laser fluence controls the thickness of the graphene film down to a single monolayer. Laser-synthesized graphene does not display some of the structural characteristics observed in EG grown by conventional thermal decomposition on SiC (0001), such as Bernal stacking and surface reconstruction of the underlying SiC surface.

13.
Nat Nanotechnol ; 5(7): 477-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20606637
14.
Nano Lett ; 10(1): 329-33, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20030392

RESUMEN

Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi(2)Se(3) material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi(2)Se(3) nanomaterials with a variety of morphologies. The synthesis of Bi(2)Se(3) nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with approximately 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.


Asunto(s)
Nanoestructuras/química , Nanotecnología/métodos , Nanocables/química , Bismuto/química , Cristalización/métodos , Electroquímica/métodos , Electrónica , Oro/química , Microscopía Electrónica de Transmisión/métodos , Microscopía de Túnel de Rastreo/métodos , Nanotecnología/instrumentación , Selenio/química , Espectrofotometría/métodos , Propiedades de Superficie , Temperatura
15.
Nat Nanotechnol ; 4(3): 167-72, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19265846

RESUMEN

The ability of the scanning tunnelling microscope to manipulate single atoms and molecules has allowed a single bit of information to be represented by a single atom or molecule. Although such information densities remain far beyond the reach of real-world devices, it has been assumed that the finite spacing between atoms in condensed-matter systems sets a rigid upper limit on information density. Here, we show that it is possible to exceed this limit with a holographic method that is based on electron wavefunctions rather than free-space optical waves. Scanning tunnelling microscopy and holograms comprised of individually manipulated molecules are used to create and detect electronically projected objects with features as small as approximately 0.3 nm, and to achieve information densities in excess of 20 bits nm-2. Our electronic quantum encoding scheme involves placing tens of bits of information into a single fermionic state.

16.
Science ; 319(5864): 782-7, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18258909

RESUMEN

Quantum phase is not directly observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures with matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these "quantum drums"-degenerate two-dimensional electron states on the copper(111) surface confined by individually positioned carbon monoxide molecules-reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...