Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAC Antimicrob Resist ; 5(2): dlad016, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36880086

RESUMEN

NDM-expressing Escherichia coli infections are challenging to treat, due to limited treatment options. E. coli with four-amino acid inserts (YRIN/YRIK) are also common in India and it has been reported to reduce the susceptibility to aztreonam/avibactam and the clinically used triple combination ceftazidime/avibactam with aztreonam. Thus, there is a severe dearth of antibiotics to treat infections of NDM + PBP3 insert E. coli. In this study, we determined the susceptibility of E. coli with NDM and PBP3 insert to fosfomycin as an alternative option to treat serious infections. Non-duplicate well-characterized NDM-expressing (without or with co-expression of OXA-48-like) E. coli isolates (n = 213) subsequently carrying four-amino acid inserts in PBP3 were included in this study. MICs of fosfomycin were determined by the agar dilution method with glucose-6-phosphate supplementation, while for other comparators the broth microdilution method was used. Collectively, 98% of NDM-expressing E. coli isolates with PBP3 insert were susceptible to fosfomycin at the MIC of ≤32 mg/L. Resistance to aztreonam was noticed in 38% of the tested isolates. Putting together fosfomycin's in vitro activity, clinical efficacy and safety in randomized controlled trials, we conclude that fosfomycin could be considered as an alternative option to treat infections caused by E. coli harbouring NDM and PBP3 insert resistance mechanisms.

2.
Eur J Clin Microbiol Infect Dis ; 42(5): 645-651, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905566

RESUMEN

Carbapenem-resistant Acinetobacter baumannii (CRAB) is often difficult to treat. Considering the current circumstances, there is an unquestionable need for new therapeutic options to treat CRAB infections. In the present study, the synergistic activity of sulbactam-based combination was determined against genetically characterized CRAB isolates. Non-duplicate CRAB isolates (n = 150) recovered from blood culture and endotracheal aspirates were included in this study. The minimum inhibitory concentrations (MICs) of tetracyclines (minocycline, tigecycline, eravacycline) and their comparators (meropenem, sulbactam, cefoperazone/sulbactam, ceftazidime/avibactam, and colistin) were determined using the microbroth dilution method. Six isolates were tested for the synergistic activity of various sulbactam-based combinations using time-kill experiments. Tigecycline and minocycline showed a wide spread of MICs with most isolates in the range of 1 to 16 mg/L. The MIC90 of eravacycline (0.5 mg/L) was four dilutions lower than that of tigecycline (8 mg/L). Minocycline with sulbactam was the most active dual combination against OXA-23 like (n = 2) and NDM with OXA-23 like producers (n = 1), which resulted in ≥ 2 log10 kill. The combination of ceftazidime-avibactam with sulbactam showed ≥ 3 log10 kill against all the three tested OXA-23 like producing CRAB isolates, but showed no activity against dual carbapenemase producers. Sulbactam with meropenem showed ≥ 2 log10 kill against one OXA-23 like producing CRAB isolate. The findings suggest that sulbactam-based combination may confer therapeutic benefits against CRAB infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Sulbactam/farmacología , Sulbactam/uso terapéutico , Minociclina/uso terapéutico , Meropenem/uso terapéutico , Tigeciclina/uso terapéutico , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Sinergismo Farmacológico
3.
Microbiol Spectr ; : e0492522, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847537

RESUMEN

In recent times, discovery efforts for novel antibiotics have mostly targeted carbapenemase-producing Gram-negative organisms. Two different combination approaches are pertinent: ß-lactam-ß-lactamase inhibitor (BL/BLI) or ß-lactam-ß-lactam enhancer (BL/BLE). Cefepime combined with a BLI, taniborbactam, or with a BLE, zidebactam, has been shown to be promising. In this study, we determined the in vitro activity of both these agents along with comparators against multicentric carbapenemase-producing Enterobacterales (CPE). Nonduplicate CPE isolates of Escherichia coli (n = 270) and Klebsiella pneumoniae (n = 300), collected from nine different tertiary-care hospitals across India during 2019 to 2021, were included in the study. Carbapenemases in these isolates were detected by PCR. E. coli isolates were also screened for the presence of the 4-amino-acid insert in penicillin binding protein 3 (PBP3). MICs were determined by reference broth microdilution. Higher MICs of cefepime/taniborbactam (>8 mg/L) were linked to NDM, both in K. pneumoniae and in E. coli. In particular, such higher MICs were observed in 88 to 90% of E. coli isolates producing NDM and OXA-48-like or NDM alone. On the other hand, OXA-48-like-producing E. coli or K. pneumoniae isolates were nearly 100% susceptible to cefepime/taniborbactam. Regardless of the carbapenemase types and the pathogens, cefepime/zidebactam showed potent activity (>99% inhibited at ≤8 mg/L). It seems that the 4-amino-acid insert in PBP3 (present universally in the study E. coli isolates) along with NDM adversely impact the activity of cefepime/taniborbactam. Thus, the limitations of the BL/BLI approach in tackling the complex interplay of enzymatic and nonenzymatic resistance mechanisms were better revealed in whole-cell studies where the activity observed was a net effect of ß-lactamase inhibition, cellular uptake, and target affinity of the combination. IMPORTANCE The study revealed the differential ability of cefepime/taniborbactam and cefepime/zidebactam in tackling carbapenemase-producing Indian clinical isolates that also harbored additional mechanisms of resistance. NDM-expressing E. coli with 4-amino-acid insert in PBP3 are predominately resistant to cefepime/taniborbactam, while the ß-lactam enhancer mechanism-based cefepime/zidebactam showed consistent activity against single- or dual-carbapenemase-producing isolates including E. coli with PBP3 inserts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...