Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroradiology ; 66(6): 985-998, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605104

RESUMEN

PURPOSE: To examine hemodynamic and functional connectivity alterations and their association with neurocognitive and mental health indices in patients with chronic mild traumatic brain injury (mTBI). METHODS: Resting-state functional MRI (rs-fMRI) and neuropsychological assessment of 37 patients with chronic mTBI were performed. Intrinsic connectivity contrast (ICC) and time-shift analysis (TSA) of the rs-fMRI data allowed the assessment of regional hemodynamic and functional connectivity disturbances and their coupling (or uncoupling). Thirty-nine healthy age- and gender-matched participants were also examined. RESULTS: Patients with chronic mTBI displayed hypoconnectivity in bilateral hippocampi and parahippocampal gyri and increased connectivity in parietal areas (right angular gyrus and left superior parietal lobule (SPL)). Slower perfusion (hemodynamic lag) in the left anterior hippocampus was associated with higher self-reported symptoms of depression (r = - 0.53, p = .0006) and anxiety (r = - 0.484, p = .002), while faster perfusion (hemodynamic lead) in the left SPL was associated with lower semantic fluency (r = - 0.474, p = .002). Finally, functional coupling (high connectivity and hemodynamic lead) in the right anterior cingulate cortex (ACC)) was associated with lower performance on attention and visuomotor coordination (r = - 0.50, p = .001), while dysfunctional coupling (low connectivity and hemodynamic lag) in the left ventral posterior cingulate cortex (PCC) and right SPL was associated with lower scores on immediate passage memory (r = - 0.52, p = .001; r = - 0.53, p = .0006, respectively). Uncoupling in the right extrastriate visual cortex and posterior middle temporal gyrus was negatively associated with cognitive flexibility (r = - 0.50, p = .001). CONCLUSION: Hemodynamic and functional connectivity differences, indicating neurovascular (un)coupling, may be linked to mental health and neurocognitive indices in patients with chronic mTBI.


Asunto(s)
Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Adulto , Estudios de Casos y Controles , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Conmoción Encefálica/complicaciones , Hemodinámica/fisiología , Persona de Mediana Edad , Enfermedad Crónica , Mapeo Encefálico/métodos
2.
Sci Rep ; 14(1): 3759, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355655

RESUMEN

Adjuvant Temozolomide is considered the front-line Glioblastoma chemotherapeutic treatment; yet not all patients respond. Latest trends in clinical trials usually refer to Doxorubicin; yet it can lead to severe side-effects if administered in high doses. While Glioblastoma prognosis remains poor, little is known about the combination of the two chemotherapeutics. Patient-derived spheroids were generated and treated with a range of Temozolomide/Doxorubicin concentrations either as monotherapy or in combination. Optical microscopy was used to monitor the growth pattern and cell death. Based on the monotherapy experiments, we developed a probabilistic mathematical framework in order to describe the drug-induced effect at the single-cell level and simulate drug doses in combination assuming probabilistic independence. Doxorubicin was found to be effective in doses even four orders of magnitude less than Temozolomide in monotherapy. The combination therapy doses tested in vitro were able to lead to irreversible growth inhibition at doses where monotherapy resulted in relapse. In our simulations, we assumed both drugs are anti-mitotic; Temozolomide has a growth-arrest effect, while Doxorubicin is able to cumulatively cause necrosis. Interestingly, under no mechanistic synergy assumption, the in silico predictions underestimate the in vitro results. In silico models allow the exploration of a variety of potential underlying hypotheses. The simulated-biological discrepancy at certain doses indicates a supra-additive response when both drugs are combined. Our results suggest a Temozolomide-Doxorubicin dual chemotherapeutic scheme to both disable proliferation and increase cytotoxicity against Glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo
3.
Neuroinformatics ; 21(2): 427-442, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36456762

RESUMEN

Traumatic Brain Injury (TBI) is a frequently occurring condition and approximately 90% of TBI cases are classified as mild (mTBI). However, conventional MRI has limited diagnostic and prognostic value, thus warranting the utilization of additional imaging modalities and analysis procedures. The functional connectomic approach using resting-state functional MRI (rs-fMRI) has shown great potential and promising diagnostic capabilities across multiple clinical scenarios, including mTBI. Additionally, there is increasing recognition of a fundamental role of brain dynamics in healthy and pathological cognition. Here, we undertake an in-depth investigation of mTBI-related connectomic disturbances and their emotional and cognitive correlates. We leveraged machine learning and graph theory to combine static and dynamic functional connectivity (FC) with regional entropy values, achieving classification accuracy up to 75% (77, 74 and 76% precision, sensitivity and specificity, respectively). As compared to healthy controls, the mTBI group displayed hypoconnectivity in the temporal poles, which correlated positively with semantic (r = 0.43, p < 0.008) and phonemic verbal fluency (r = 0.46, p < 0.004), while hypoconnectivity in the right dorsal posterior cingulate correlated positively with depression symptom severity (r = 0.54, p < 0.0006). These results highlight the importance of residual FC in these regions for preserved cognitive and emotional function in mTBI. Conversely, hyperconnectivity was observed in the right precentral and supramarginal gyri, which correlated negatively with semantic verbal fluency (r=-0.47, p < 0.003), indicating a potential ineffective compensatory mechanism. These novel results are promising toward understanding the pathophysiology of mTBI and explaining some of its most lingering emotional and cognitive symptoms.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Conectoma , Humanos , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
4.
Brain Imaging Behav ; 15(3): 1438-1449, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32734434

RESUMEN

The study explored associations between hemodynamic changes and psychoemotional status in 32 patients with chronic mild traumatic brain injury (mTBI) and 31 age-matched healthy volunteers. Cerebral blood flow (CBF) and cerebral blood volume (CBV) values were obtained using Dynamic Susceptibility Contrast Magnetic Resonance Imaging in brain regions suspected to play a role in anxiety and depression. Patients were administered self-report measures of anxiety and depression symptoms and underwent neuropsychological assessment. As a group mTBI patients scored significantly below age- and education-adjusted population norms on multiple cognitive domains and reported high rates of anxiety and depression symptomatology. Significantly reduced CBF values were detected in the mTBI group compared to controls in dorsolateral prefrontal areas, putamen, and hippocampus, bilaterally. Within the mTBI group, depressive symptomatology was significantly associated with lower perfusion in the left anterior cingulate gyrus and higher perfusion in the putamen, bilaterally. The latter association was independent from verbal working memory capacity. Moreover, anxiety symptomatology was associated with lower perfusion in the hippocampus (after controlling for verbal episodic memory difficulties). Associations between regional perfusion and psychoemotional scores were specific to depression or anxiety, respectively, and independent of the presence of visible lesions on conventional MRI. Results are discussed in relation to the role of specific limbic and paralimbic regions in the pathogenesis of symptoms of depression and anxiety.


Asunto(s)
Conmoción Encefálica , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Humanos , Imagen por Resonancia Magnética , Perfusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...